分析 (1)根据题意确定出拆项规律,写出第n个式子即可;
(2)根据拆项规律,先拆项再抵消写即可求解;
(3)根据拆项规律,先拆项再抵消写即可求解;
(4)根据拆项规律,先拆项再抵消写即可求解.
解答 解:(1)$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$(n是正整数)
(2)$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$+…+$\frac{1}{2004×2005}$
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2004}$-$\frac{1}{2005}$
=1-$\frac{1}{2005}$
=$\frac{2004}{2005}$.
(3)$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+$\frac{1}{4×5}$+…+$\frac{1}{n(n+1)}$
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$
=1-$\frac{1}{n+1}$
=$\frac{n}{n+1}$.
(4)$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+$\frac{1}{7×9}$+…+$\frac{1}{2013×2015}$
=$\frac{1}{2}$×(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{2013}$-$\frac{1}{2015}$)
=$\frac{1}{2}$×(1-$\frac{1}{2015}$)
=$\frac{1}{2}$×$\frac{2014}{2015}$
=$\frac{1007}{2015}$.
故答案为:(1)$\frac{1}{n}$-$\frac{1}{n+1}$; (2)$\frac{2004}{2005}$;(3)$\frac{n}{n+1}$.
点评 考查了有理数的混合运算,(4)的关键是将式子变形为$\frac{1}{2}$×(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{2013}$-$\frac{1}{2015}$)进行计算.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{m+1}{n+1}$=$\frac{m}{n}$ | B. | $\frac{(x+a)(x-b)+2b}{(x+a)(x+b)}$=1 | ||
| C. | $\frac{{b}^{2}-{a}^{2}}{a-b}$=-b-a | D. | x$÷y×\frac{2}{y}=\frac{x}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com