【题目】如图,已知A(﹣4,n),B(2,﹣4)是一次函数和反比例函数的图象的两个交点.
(1)求一次函数和反比例函数的解析式;
(2)观察图象,直接写出方程的解;
(3)求△AOB的面积;
(4)观察图象,直接写出不等式的解集.
【答案】(1)y=﹣x﹣2,;(2),;(3)6;(4)﹣4<x<0或x>2.
【解析】
试题分析:(1)把B (2,﹣4)代入反比例函数得出m的值,再把A(﹣4,n)代入一次函数的解析式y=kx+b,运用待定系数法分别求其解析式;
(2)经过观察可发现所求方程的解应为所给函数的两个交点的横坐标;
(3)先求出直线y=﹣x﹣2与x轴交点C的坐标,然后利用S△AOB=S△AOC+S△BOC进行计算;
(4)观察函数图象得到当x<﹣4或0<x<2时,一次函数的图象在反比例函数图象上方,即使.
试题解析:(1)∵B(2,﹣4)在上,∴m=﹣8,∴反比例函数的解析式为.
∵点A(﹣4,n)在上,∴n=2,∴A(﹣4,2).
∵y=kx+b经过A(﹣4,2),B(2,﹣4),∴.解得:,∴一次函数的解析式为y=﹣x﹣2.
(2):∵A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点,∴方程的解是,.
(3)∵当x=0时,y=﹣2,∴点C(0,﹣2),∴OC=2,∴S△AOB=S△ACO+S△BCO=×2×4+×2×2=6;
(4)不等式的解集为﹣4<x<0或x>2.
科目:初中数学 来源: 题型:
【题目】滕州市出租车的收费标准是:起步价6元(即行驶距离不超过3千米都需付6元车费),超过3千米以后,每增加1千米,加收1.5元(不足1千米按1千米计).某人从甲地到乙地路程是x千米,出租车费为16.5元,那么x的最大值是( )
A.11
B.10
C.9
D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】人体中红细胞的直径约为0.0000077m,将数0.0000077用科学记数法表示为( )
A. 77×10﹣5 B. 7.7×10﹣6 C. 0.77×10﹣7 D. 7.7×10﹣7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与x轴相交于点A(-3,0)B(-1,0),与y轴相交于点C(0,3),点P是该图象上的动点;一次函数y=kx-4k(k≠0)的图象过点P交x轴于点Q.
(1)求该二次函数的解析式;
(2)当点P的坐标为(-4,m)时,求证:∠OPC=∠AQC;
(3)点M、N分别在线段AQ、CQ上,点M以每秒3个单位长度的速度从点A向点Q运动,同时,点N以每秒1个单位长度的速度从点C向点Q运动,当点M、N中有一点到达Q点时,两点同时停止运动,设运动时间为t秒.
①连接AN,当△AMN的面积最大时,求t的值;
②线段PQ能否垂直平分线段MN?如果能,请求出此时直线PQ的函数关系式;如果不能请说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】移动互联网已全面进入人们的日常生活,某市4G用户总数达到3820000,数据3820000用科学记数法表示为( )
A. 3.8×106 B. 3.82×105 C. 3.82×106 D. 3.82×107
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com