精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(2,3)和(-3,-12).
(1)求此二次函数的表达式;
(2)若直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),则是否存在这样的直线l,使得△BOD∽△BAC?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由.

解:(1)∵二次函数图象顶点的横坐标为1,且过点(2,3)和(-3,-12),
∴由
解得
∴此二次函数的表达式为y=-x2+2x+3;

(2)假设存在直线l:y=kx(k≠0)与线段BC交于点D(不与点B,C重合),使得以B,O,D为顶点的三角形与△BAC相似.
在y=-x2+2x+3中,令y=0,则由-x2+2x+3=0,
解得x1=-1,x2=3
∴A(-1,0),B(3,0)
令x=0,得y=3.
∴C(0,3).
设过点O的直线l交BC于点D,过点D作DE⊥x轴于点E.
∵点B的坐标为(3,0),点C的坐标为(0,3),点A的坐标为(-1,0).
∴|AB|=4,|OB|=|OC|=3,∠OBC=45°.
∴|BC|==3
要使△BOD∽△BAC或△BDO∽△BAC,
已有∠B=∠B,则只需 ,①或 ②成立.
若是①,则有|BD|===
而∠OBC=45°,
∴|BE|=|DE|.
∴在Rt△BDE中,由勾股定理,
得|BE|2+|DE|2=2|BE|2=|BD|2=( 2
解得|BE|=|DE|=(负值舍去).
∴|OE|=|OB|-|BE|=3-=
∴点D的坐标为(
将点D的坐标代入y=kx(k≠0)中,求得k=3,
∴满足条件的直线l的函数表达式为y=3x,
或求出直线AC的函数表达式为y=3x+3,则与直线AC平行的直线l的函数表达式为y=3x,
此时易知△BOD∽△BAC,再求出直线BC的函数表达式为y=-x+3.联立y=3x,y=-x+3求得点D的坐标为( ),
若是②,则有|BD|===2
而∠OBC=45°,
∴|BE|=|DE|,
∴在Rt△BDE中,由勾股定理,
得|BE|2+|DE|2=2|BE|2=|BD|2=(2 2
解得|BE|=|DE|=2(负值舍去)
∴|OE|=|OB|-|BE|=3-2=1.
∴点D的坐标为(1,2).
将点D的坐标代入y=kx(k≠0)中,求得k=2.
∴满足条件的直线l的函数表达式为y=2x.
∴存在直线l:y=3x或y=2x与线段BC交于点D(不与点B,C重合),
使得以B,O,D为顶点的三角形与△BAC相似,且点D的坐标分别为( )或(1,2).
分析:(1)已知了抛物线的顶点横坐标为1,即x=-=1,将已知的两点坐标代入抛物线中,联立三式即可求出抛物线的解析式.
(2)本题要分两种情况讨论:△BOD∽△BAC或△BDO∽△BAC,解题思路都是通过相似三角形得出的关于BD、BC、BO、BA的比例关系式求出BD的长,然后根据∠OBC=45°的特殊条件用BD的长求出D点的坐标.
点评:本题是二次函数综合题,考查了二次函数解析式的确定、相似三角形的判定、函数图象交点等知识点.综合性强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=-
4
9
(x-2)2
+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=
2
5
5

(1)求此抛物线的函数表达式;
(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若
HE
HF
=
1
2
时,求点P的坐标;
(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG与△ADM相似?若存在,求出所有符合条件的精英家教网直线QG的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在平面直角坐标系xOy中,已知抛物线y=ax2-2ax+b与x轴的一个交点为A(-1,0),另一个交精英家教网点B在A点的右侧;交y轴于(0,-3).
(1)求这个二次函数的解析式;
(2)设抛物线的顶点为C,抛物线上一点D的坐标为(-3,12),在x轴上是否存在一点P,使以点P、B、C为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴、y轴正半轴交于点M、N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC边落在x轴的正半轴上,点A恰好落在线段MN上,如图2,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB、AC分别与线段MN交于点E、F,在△ABC平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s),△PEF的面积为S(cm2).
(1)求等边△ABC的边长;
(2)当点P在线段BA上运动时,求S与t的函数关系式,并写出自变量t的取值范围;
(3)点P沿折线B→A→C运动的过程中,是否在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•卢湾区一模)如图,已知在平面直角坐标系xoy中,抛物线y=ax2+bx+c(a>0)与x轴相交于A(-1,0),B(3,0)两点,对称轴l与x轴相交于点C,顶点为点D,且∠ADC的正切值为
12

(1)求顶点D的坐标;
(2)求抛物线的表达式;
(3)F点是抛物线上的一点,且位于第一象限,连接AF,若∠FAC=∠ADC,求F点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在等腰直角三角板ABC中,斜边BC为2个单位长度,现把这块三角板在平面直角坐标系xOy中滑动,并使B、C两点始终分别位于y轴、x轴的正半轴上,直角顶点A与原点O位于BC两侧.
(1)取BC中点D,问OD+DA是否发生改变,若会,说明理由;若不会,求出OD+DA;
(2)你认为OA的长度是否会发生变化?若变化,那么OA最长是多少?OA最长时四边形OBAC是怎样的四边形?并说明理由;
(3)填空:当OA最长时A的坐标(
2
2
2
2
),直线OA的解析式
y=x
y=x

查看答案和解析>>

同步练习册答案