精英家教网 > 初中数学 > 题目详情

△ABC中,∠ABC=90°,AB=3cm,BC=5cm,若⊙A的半径为3.3cm,⊙C的半径为2.4cm,则⊙A与⊙C的位置关系是


  1. A.
    外切
  2. B.
    相交
  3. C.
    外离
  4. D.
    内切
C
分析:判断两圆的位置关系其实质是判断两圆的半径这和与两圆圆心距的大小关系.
解答:在△ABC中,由勾股定理得:
=cm;
设r1与r2分别是⊙A与⊙C的半径,且两圆心距离为,
r1+r2=3.3+2.4=5.7cm,
∵(r1+r22=32.49<AC2=34,
∴⊙A与⊙C位置外离.
故选:C
点评:本题借助直角三角形考查了由数量关系来判断两圆位置关系的方法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

20、问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA.探究∠DBC与∠ABC度数的比值.
请你完成下列探究过程:
先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当∠BAC=90°时,依问题中的条件补全右图;
观察图形,AB与AC的数量关系为
相等
;当推出∠DAC=15°时,可进一步推出∠DBC的度数为
15°
;可得到∠DBC与∠ABC度数的比值为
1:3

(2)当∠BAC<90°时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.

查看答案和解析>>

科目:初中数学 来源:江苏期中题 题型:解答题

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH?H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH?重叠部分的面积为y,求y与t的函数关系.

查看答案和解析>>

科目:初中数学 来源:湖南省中考真题 题型:解答题

如图1,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3。
(1)延长HF交AB于G,求△AHG的面积;
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B 重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图2)。
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由;
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系。

查看答案和解析>>

同步练习册答案