【题目】如图,已知∠A=∠D,AB=DB,点E在AC边上,∠AED=∠CBE,AB和DE相交于点F.
(1)求证:△ABC≌△DBE.
(2)若∠CBE=50°,求∠BED的度数.
【答案】(1)见解析;(2)∠BEC=65°
【解析】
(1)根据三角形的内角和得到∠ABD=∠AED,求得∠ABC=∠DBE,根据全等三角形的判定定理即可得到结论;
(2)根据全等三角形的性质得到BE=BC,求得∠BEC=∠C,根据三角形的内角和即可得到结论.
(1)证明:∵∠A=∠D,∠AFE=∠BFD,
∴∠ABD=∠AED,
又∵∠AED=∠CBE,
∴∠ABD+∠ABE=∠CBE+∠ABE,
即∠ABC=∠DBE,
在△ABC和△DBE中,
,
∴△ABC≌△DBE(ASA);
(2)解:∵△ABC≌△DBE,
∴BE=BC,
∴∠BEC=∠C,
∵∠CBE=50°,
∴∠BEC=∠C=65°.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A、B的坐标分别为(10,0)、(0,4),C是AB的中点,过点C作y轴的垂线,垂足为D,动点P从点D出发,沿DC向点C以每秒1个单位匀速运动,过点P作x轴的垂线,垂足为E,连接BP、EC.当BP所在直线与EC所在直线垂直时,点P运动的时间为_____秒.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,每个小正方形的边长为1,格点三角形(顶点在网格线的交点的三角形)ABC的顶点A,C坐标分别是(a,5),(﹣1,b).
(1)求a,b的值;
(2)在图中作出直角坐标系;
(3)在图中作出△ABC关于y轴对称的图形△A'B'C'.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=60°,OC平分∠AOB,P为射线OC上一点,如果射线OA上的点D,满足△OPD是等腰三角形,那么∠ODP的度数为( )
A.30°B.120°
C.30°或120°D.30°或75°或120°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,ED∥AB交AC于点G,下列结论:①BD=DC;②AE∥BC;③AE=AG;④AG=DE.正确的是_____(填写序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解答下列问题:
在一个不透明的口袋中有个红球和若干个白球,这些球除颜色不同外其他都相同,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下颜色,再把它放回袋中,不断重复上述过程,实验总共摸了次,其中有次摸到了红球,那么估计口袋中有白球多少个?
请思考并作答:
在一个不透明的口袋里装有若干个形状、大小完全相同的白球,在不允许将球倒出来的情况下,如何估计白球的个数(可以借助其它工具及用品)?写出解决问题的主要步骤及估算方法,并求出结果(其中所需数量用、、等字母表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线的抛物线与x轴相交于A、B两点,其中A点的坐标为(-3,0)。
(1)求点B的坐标;
(2)已知,C为抛物线与y轴的交点。
①若点P在抛物线上,且,求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠B=30°,O是BC上一点,以点O为圆心,OB长为半径作圆,恰好经过点A,并与BC交于点D.
(1)求证:CA是⊙O的切线.
(2)若AB=2,求图中阴影部分的面积(结果保留π).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com