【题目】已知等边的边长为2,现将等边放置在平面直角坐标系中,点B和原点重合,点C在x轴正方向上,直线交x轴于点D,交y轴于点E,且如图,现将等边从图1的位置沿x轴正方向以每秒1个单位长度的速度移动,边AB、AC分别与线段DE交于点G、如图,同时点P从的顶点B出发,以每秒2个单位长度的速度沿折线运动当点P运动到C时即停止活动,也随之停止移动,设平移的时间为.
试求直线DE的解析式;
当点P在线段AC上运动时,设点P与点H的距离为y,求y与t的函数关系式,并写出定义域;
当点P在线段AB上运动时,中恰好有一个角的度数为,请直接写出t的值,不必写过程.
【答案】当运动时间t为秒或秒或1秒时,中恰好有一个角的度数为
【解析】
根据等边三角形的性质结合,可得出,结合AB的长度可得出OE、OD的长度,进而可得出点D、E的坐标,利用待定系数法即可求出直线DE的解析式;
根据点P、C的运动速度可得出PA、CD的值,由、可得出,进而可得出CH的长,再根据即可找出y与t的函数关系式;
分点P、A重合及点P、A不重合两种情况考虑:当点P、A重合时,即时,符合题意,由可求出t值;当点P、A不重合时,分和两种情况考虑,通过解直角三角形即可求出t值综上即可得出结论.
解:为等边三角形,
.
,
,
,,
点D的坐标为,点E的坐标为
设直线DE的解析式为,
将、代入,得:
,解得:,
直线DE的解析式为.
如图3,,.
,,
,
,
.
点P在AC上,
,
.
如图2,,,.
,,
.
当点P、A重合时,即时,符合题意,
此时;
当点P、A不重合时,,,
若,则,即,
解得:;
若,则,即,
解得:.
综上所述:当运动时间t为秒或秒或1秒时,中恰好有一个角的度数为.
科目:初中数学 来源: 题型:
【题目】我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:
(1)设装运A种脐橙的车辆数为,装运B种脐橙的车辆数为,求与之间的函数关系式;
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,∠A=60°,过点C作⊙O的切线,交射线BO于点E.
(1)求∠BCE的度数;
(2)若⊙O半径为3,求BE长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,OA=OB,函数y=﹣ 的图象与线段AB交于M点,且AM=BM.
(1)求点M的坐标;
(2)求直线AB的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】实验室里,水平桌面上有甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,,用两个相同的管子在容器的5cm高度处连通(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升cm,则开始注入 分钟的水量后,甲与乙的水位高度之差是0.5cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】八年级(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:
(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与M,N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.
(Ⅱ)∠AOB是一个任意角,在边OA,OB上分别取OM=ON,将角尺的直角顶点P介于射线OA,OB之间,移动角尺使角尺两边相同的刻度与M,N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.
(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.
(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有一个种植总面积为540 m2的长方形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总垄数不低于10垄,又不超过14垄(垄数为正整数),它们的占地面积、产量、利润分别如下:
(1)若设草莓共种植了x垄,请说明共有几种种植方案,分别是哪几种;
(2)在这几种种植方案中,哪种方案获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC,若AB=CD,试证明BD平分EF,若将△DEC的边EC沿AC方向移动变为图(2)时,其余条件不变,上述结论是否成立?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 50≤x<60 | 6 |
第2组 | 60≤x<70 | 8 |
第3组 | 70≤x<80 | 14 |
第4组 | 80≤x<90 | a |
第5组 | 90≤x<100 | 10 |
请结合图表完成下列各题:
(1)①求表中a的值;②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com