精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ACB=90°,∠ABC=30°,直角∠MON的顶点OAB上,OMON分别交CACB于点PQ,∠MON绕点O意旋转.当时.的值为_____

【答案】

【解析】

如图,过点OOHACHOGBCG,由条件可以表示出HOGO的值,通过证明PHO∽△QGO由相似三角形的性质就可以求出结论.

解:过点OOHACHOGBCG


∴∠OHP=OGQ=90°
∵∠ACB=90°
∴四边形HCGO为矩形,
∴∠HOG=90°
∴∠HOP=GOQ
∴△PHO∽△QGO

,设OA=x,则OB=2x,且∠ABC=30°
AH=xOG=x
RtAHO中,由勾股定理,得
OH= x


故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】运城有甲、乙两家葡萄采摘园的葡萄销售价格相同,中秋期间,两家采摘园推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的葡萄六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的葡萄按售价付款。优惠期间,设游客的葡萄采摘量为(千克),在甲园所需总费用为(元),在乙园所需总费用为(元),之间的函数关系如图所示.

1)求的函数表达式;

2)在中秋期间,李娜一家三口准备去葡萄园采摘葡萄,采摘的葡萄合在一起支付费用,则李娜一家应选择哪家葡萄园更划算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数是常数,)的自变量与函数值的部分对应值如下表:

0

1

2

且当时,与其对应的函数值.有下列结论:①;②3是关于的方程的两个根;③.其中,正确结论的个数是( )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】12分)如图,经过点C(0,﹣4)的抛物线)与x轴相交于A(﹣2,0),B两点.

(1)a 0, 0(填“>”或“<”);

(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;

(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在正方形ABCD中,E,F分别是边AD,CD上的点,AE=ED,DF=DC,连结EF并延长交BC的延长线于点G,连结BE.

(1)求证:△ABE∽△DEF.

(2)若正方形的边长为4,求BG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点Ax轴正半轴上,点By轴正半轴上,O为坐标原点,OAOB1,过点OOM1AB于点M1;过点M1M1A1OA于点A1:过点A1A1M2AB于点M2;过点M2M2A2OA于点A2以此类推,点M2019的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)y轴上是否存在一点P,使PBC为等腰三角形.若存在,请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M 达点B时,点MN同时停止运动,问点MN运动到何处时,MNB面积最大,试求出最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD与BC相交于点F,FA=FC,∠A=∠C,点E在BD的垂直平分线上.

(1)如图1,求证:∠FBE=∠FDE;

(2)如图2,连接CE分别交BD、AD于点H、G,当∠FBD=∠DBE=∠ABF,CD=DE时,直接写出所有与△ABF全等的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】5G网络是第五代移动通信网络,它将推动我国数字经济发展迈上新台阶. 据预测,2020年到2030年中国5G直接经济产出和间接经济产出的情况如下图所示.

根据上图提供的信息,下列推断不合理的是( )

A.20305G间接经济产出比5G直接经济产出多4.2万亿元

B.2020年到2030年,5G直接经济产出和5G间接经济产出都是逐年增长

C.20305G直接经济产出约为20205G直接经济产出的13

D.2022年到2023年与2023年到20245G间接经济产出的增长率相同

查看答案和解析>>

同步练习册答案