分析 根据正方形的性质可得BC=CD,CE=CG,∠BCD=∠ECG=90°,然后求出∠BCE=∠DCG,再利用“边角边”证明△BCE和△DCG全等,根据全等三角形对应边相等可得BE=DG,判定①正确;全等三角形对应角相等可得∠CBE=∠CDG,然后证明△BCM和△DCQ全等,根据全等三角形对应边相等可得BM=DQ,CM=CQ,判定②正确;根据∠CGP+∠CPG=90°,∠CDQ+∠CQD=90°,然后求出∠CQD≠CPG,从而得到CQ≠CP,所以,CM≠CP,判定③错误;根据∠CBE+∠BMC=90°推出∠CDG+∠DMN=90°,然后求出∠DNM=90°,即可得到∠BNQ=90°.
解答 解:在正方形ABCD与正方形CEFG中,
BC=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCD+∠DCE=∠ECG+∠DCE,
即∠BCE=∠DCG,
在△BCE和△DCG中,
$\left\{\begin{array}{l}{BC=CD}\\{∠BCE=∠DCG}\\{CE=CG}\end{array}\right.$,
∴△BCE≌△DCG(SAS),
∴BE=DG,∠CBE=∠CDG,故①正确;
在△BCM和△DCQ中,
$\left\{\begin{array}{l}{∠CBE=∠CDG}\\{BC=DC}\\{∠BCM=∠DCQ=90°}\end{array}\right.$,
∴△BCM≌△DCQ(ASA),
∴BM=DQ,CM=CQ,故②正确;
在Rt△CPG中,∠CGP+∠CPG=90°,
在Rt△CDQ中,∠CDQ+∠CQD=90°,
∵正方形ABCD与正方形CEFG的边长不等,
∴∠CDQ≠∠CGP,
∴∠CQD≠CPG,
∴CQ≠CP,
∴CM≠CP,故③错误;
∵∠CBE+∠BMC=90°,∠CBE=∠CDG,∠BMC=∠DMN(对顶角相等),
∴∠CDG+∠DMN=90°,
∴∠DNM=90°,
∴∠BNQ=180°-∠DNM=180°-90°=90°,故④正确,
综上所述,恒成立的有①②④共3个.
故答案为:①②④.
点评 本题考查了正方形的性质,全等三角形的判定与性质,综合题但难度不大,熟练掌握正方形的性质,准确识图找出全等三角形并求出全等的条件是解题的关键,也是本题的难点.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com