精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的二次函数y=ax2+bx+c的图象经过点(﹣2,y1),(﹣1,y2),(1,0),且y1<0<y2 , 对于以下结论:
①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有 x2+x≥﹣ ;④在﹣2<x<﹣1中存在一个实数x0 , 使得x0=﹣
其中结论错误的是 (只填写序号).

【答案】②
【解析】解:由题意二次函数图象如图所示,

∴a<0.b<0,c>0,
∴abc>0,故①正确.
∵a+b+c=0,
∴c=﹣a﹣b,
∴a+3b+2c=a+3b﹣2a﹣2b=b﹣a,
又∵x=﹣1时,y>0,
∴a﹣b+c>0,
∴b﹣a<c,
∵c>O,
∴b﹣a可以是正数,
∴a+3b+2c≤0,故②错误.
所以答案是②.
∵函数y′= x2+x= (x2+ x)= (x+ 2 ,∵ >0,∴函数y′有最小值﹣ ,∴ x2+x≥﹣ ,故③正确.
∵y=ax2+bx+c的图象经过点(1,0),
∴a+b+c=0,
∴c=﹣a﹣b,
令y=0则ax2+bx﹣a﹣b=0,设它的两个根为x1 , 1,
∵x11= =﹣ ,∴x1=﹣
∵﹣2<x1<x2
∴在﹣2<x<﹣1中存在一个实数x0 , 使得x0=﹣ ,故④正确,
【考点精析】解答此题的关键在于理解二次函数图象以及系数a、b、c的关系的相关知识,掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示的数阵是由50个偶数排成的.

(1)图中框内的4个数有什么关系?

(2)在数阵图中任意作一类似于(1)中的框,设其中的一个数为,那么其他三个数怎样表示?

(3)如果四个数的和是172,能否求出这4个数?

(4)如果四个数的和是322,能否求出这4个数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ADBEABC的角平分线,DE分别在BCAC上,若AD=ABBE=BC,则∠C=(  )

A. 69° B. C. D. 不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在△ABC 中,AB=AC,∠BAC=90°,D BC 上一点,EC⊥BC,EC=BD,DF=FE.

求证:(1)△ABD≌△ACE;

(2)AFDE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究

问题1 已知:如图1,三角形ABC中,点DAB边的中点,AE⊥BC,BF⊥AC,垂足分别为点E,F,AE,BF交于点M,连接DE,DF.若DE=kDF,则k的值为   

拓展

问题2 已知:如图2,三角形ABC中,CB=CA,点DAB边的中点,点M在三角形ABC的内部,且∠MAC=∠MBC,过点M分别作ME⊥BC,MF⊥AC,垂足分别为点E,F,连接DE,DF.求证:DE=DF.

推广

问题3 如图3,若将上面问题2中的条件“CB=CA”变为“CB≠CA”,其他条件不变,试探究DEDF之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有AB两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元。

1)设运送这批货物的总费用为万元,这列货车挂A型车厢节,试写出之间的函数关系式;

2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排AB两种车厢的节数,那么共有哪几种安排车厢的方案?

3)在上述方案中,哪种方案运费最省,最少运费为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程(x﹣3)(x﹣2)﹣p2=0.
(1)求证:无论p取何值时,方程总有两个不相等的实数根;
(2)设方程两实数根分别为x1 , x2 , 且满足 ,求实数p的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 已知BE平分∠ABD, DE平分∠BDC, 并且∠1+3=90°, _____理由是____________.

查看答案和解析>>

同步练习册答案