精英家教网 > 初中数学 > 题目详情

【题目】已知边长为m的正方形面积为12,则下列关于m的说法中,错误的是(  )
①m是无理数; ②m是方程m2﹣12=0的解; ③m满足不等式组; ④m是12的算术平方根
A.①②
B.①③
C.③
D.①②④

【答案】C
【解析】已知边长为m的正方形面积为12,∴m2=12,∴m=2,∵是一个无理数,∴ m是无理数,∴ 结论①正确;∵m2=12,∴m是方程m2﹣12=0的解,∴结论②正确;∵不等式组的解集是4<m<5,m=2<2×2=4,∴ m不满足不等式组,∴结论③不正确;∵m2=12,而且m>0,∴m是12的算术平方根,∴结论④正确.综上,可得关于m的说法中,错误的是③.故选:C
①根据边长为m的正方形面积为12,可得m2=12,所以m=2,然后根据是一个无理数,可得m是无理数,据此判断即可.②根据m2=12,可得m是方程m2﹣12=0的解,据此判断即可.③首先求出不等式组的解集是4<m<5,然后根据m=2<2×2=4,可得m不满足不等式组,据此判断即可.④根据m2=12,而且m>0,可得m是12的算术平方根,据此判断即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知f(x)是定义在(0,+∞)上的单调函数,且对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=3,则方程f(x)﹣f′(x)=2的解所在的区间是(
A.(0,
B.( ,1)
C.(1,2)
D.(2,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线l1经过原点与A点,其顶点是P(﹣2,3),平行于y轴的直线m与x轴交于点B(b,0),与抛物线l1交于点M.

(1)点A的坐标是;抛物线l1的解析式是
(2)当BM=3时,求b的值;
(3)把抛物线l1绕点(0,1)旋转180°,得到抛物线l2
①直接写出当两条抛物线对应的函数值y都随着x的增大而减小时,x的取值范围
(4)②直线m与抛物线l2交于点N,设线段MN的长为n,求n与b的关系式,并求出线段MN的最小值与此时b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= ,反比例函数y= (k>0)的图像过CD的中点E.

(1)求k的值;
(2)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图像上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.

(1)求y关于x的函数解析式;

(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课前预习是学习的重要环节,为了了解所教班级学生完成课前预习的具体情况,某班主任对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类:A﹣优秀,B﹣良好,C﹣一般,D﹣较差,并将调查结果绘制成以下两幅不完整的统计图.
请你根据统计图,解答下列问题:

(1)本次一共调查了多少名学生?
(2)C类女生有 名,D类男生有 名,并将条形统计图补充完整;
(3)若从被调查的A类和C类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣|﹣(﹣π)0﹣sin30°+(﹣﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,动点P从点B出发以1厘米/秒的速度沿BC方向运动,动点Q从点C出发以2厘米/秒的速度沿CD方向运动,P,Q两点同时出发,当点Q到达点D时停止运动,点P也随之停止,设运动时间为t秒(t>0).

(1)求线段CD的长。
(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?
(3)伴随P,Q两点的运动,线段PQ的垂直平分线为l.
①t为何值时,l经过点C?
②求当l经过点D时t的值,并求出此时刻线段PQ的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是(  )

A.6
B.2 +1
C.9
D.

查看答案和解析>>

同步练习册答案