精英家教网 > 初中数学 > 题目详情
7.计算:$\sqrt{2}$(2-$\sqrt{6}$)+2$\sqrt{3}$.

分析 先进行二次根式的乘法运算,然后合并即可.

解答 解:原式=2$\sqrt{2}$-2$\sqrt{3}$+2$\sqrt{3}$
=2$\sqrt{2}$.

点评 本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.下列各对数中,互为相反数的是(  )
A.-|-7|和+(-7)B.+(-10)和-(+10)C.-(-43)和-(+43)D.+(-54)和-(+54)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.已知(a2+b2-1)(a2+b2+6)=8,则a2+b2=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知点A(1,-k2+2)在有最高点的抛物线y=kx2上,求常数k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F,Q为斜边AB的中点.
(1)如图1,当点P与点Q重合时,求证:QE=QF;
(2)如图2,若AC=BC,求证:BF=AE+EF;
(3)在(2)的条件下,若AE=6,QE=$\sqrt{2}$,求线段AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.
【初步思考】
我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】
第一种情况:当∠B是直角时,△ABC≌△DEF.
(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.
第二种情况:当∠B是钝角时,△ABC≌△DEF.
(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.
第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.
(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在平面直角坐标系xOy中,已知A(-2,0),B(0,2),C是直线AB上的一个动点(不与点A,B重合),过点C作AB的垂线,交x轴于点D.
(1)求直线AB的表达式,并直接写出∠OAB的度数;
(2)是否存在点C,使得△ACD与△AOB全等?若存在,求出点C的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,-2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,-x+1},则该函数的最小值是2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.计算
(1)-2x2(3x-xy-1);                        
(2)(-3a)2-(3a-1)(3a+2)
(3)-2x(2x+3y)-(2x-y)2                    
(4)997×1003.

查看答案和解析>>

同步练习册答案