精英家教网 > 初中数学 > 题目详情

【题目】是一块边长为1,周长记为P1的正三角形纸板,沿图的底边剪去一块边长为的正三角形纸板后得到图,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3)块纸板的周长为Pn,则P2018﹣P2017的值为(  )

A. B. C. D.

【答案】C

【解析】

根据等边三角形的性质(三边相等)求出等边三角形的周长P1,P2,P3,P4,根据周长相减的结果能找到规律即可求出答案.

P1=1+1+1=3,

P2=1+1+=

P3=1+1+×3=

P4=1+1+×2+×3=

p3-p2=-==

P4-P3=-==

Pn-Pn-1=

P2018﹣P2017=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3+2=(1+2,善于思考的小明进行了以下探索:
设a+b=(m+n2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,这样小明就找到了一种把部分a+b的式子化为平方式的方法。
请我仿照小明的方法探索并解决下列问题:
(1)当a、b、m、n均为正整数时,若a+b=(m+n2,用含m、n的式子分别表示a、b,得a=________, b=___________.

(2)若a+4=(m+n2,且a、m、n均为正整数,求a的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,有一座拱桥圆弧形,它的跨度AB为60米,拱高PM为18米,当洪水泛滥到跨度只有30米时,就要采取紧急措施,若拱顶离水面只有4米,即PN=4米时,是否采取紧急措施?( =1.414)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,BC=AC∠C=90°,直角顶点Cx轴上,一锐角顶点By轴上.

1)如图AD于垂直x轴,垂足为点D.点C坐标是(﹣10),点A的坐标是(﹣31),求点B的坐标.

2)如图,直角边BC在两坐标轴上滑动,若y轴恰好平分∠ABCACy轴交于点D,过点AAE⊥y轴于E,请猜想BDAE有怎样的数量关系,并证明你的猜想.

3)如图,直角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y轴于F,在滑动的过程中,请猜想OCAFOB之间有怎样的关系(直接写出结论,不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频

分组

频数

频率

0.550.5

   

0.1

50.5   

20

0.2

100.5150.5

   

   

   200.5

30

0.3

200.5250.5

10

0.1

率分布表和频率分布直方图(如图)

(1)补全频率分布表;

(2)在频率分布直方图中,长方形ABCD的面积是   ;这次调查的样本容量是   

(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.

(1)求BC的长;
(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读资料:
如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1 , y1),B(x2 , y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2 , 所以A,B两点间的距离为AB=
我们知道,圆可以看成到圆心的距离等于半径的点的集合,如图2,在平面直角坐标系xOy中,A (x,y)为圆上任意一点,则点A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2 , 当⊙O的半径OA为r时,⊙O的方程可写为:x2+y2=r2
问题拓展:
如果圆心坐标为P (a,b),半径为r,那么⊙P的方程可以写为 (x﹣a)2+(y﹣b)2=r2 
综合应用:
如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使∠POA=30°,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.
①证明AB是⊙P的切线;
②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以点Q为圆心,OQ长为半径的⊙Q的方程;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=﹣2x2+(m+9)x﹣6的对称轴是x=2.
(1)求抛物线表达式和顶点坐标;
(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛物线相交于点A,求点A的坐标;
(3)抛物线y=﹣2x2+(m+9)x﹣6与y轴交于点C,点A关于平移后抛物线的对称轴的对称点为点B,两条抛物线在点A、C和点A、B之间的部分(包含点A、B、C) 记为图象M.将直线y=2x﹣2向下平移b(b>0)个单位,在平移过程中直线与图象M始终有两个公共点,请你写出b的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为应对越来越严重的雾霾天气,孔明同学所在班级的家长委员会,准备为该班集资捐赠一台大型的空气净化机,现知道某商场将该型号的空气净化机按标价的八折出售,每台空气净化机仍可获利,已知该型号客气净化机的进价为元.

求该空气净化机的标价.

若该班有名学生,则该班每位学生家长应平均捐助多少元.

查看答案和解析>>

同步练习册答案