精英家教网 > 初中数学 > 题目详情

【题目】阅读资料:
如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1 , y1),B(x2 , y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2 , 所以A,B两点间的距离为AB=
我们知道,圆可以看成到圆心的距离等于半径的点的集合,如图2,在平面直角坐标系xOy中,A (x,y)为圆上任意一点,则点A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2 , 当⊙O的半径OA为r时,⊙O的方程可写为:x2+y2=r2
问题拓展:
如果圆心坐标为P (a,b),半径为r,那么⊙P的方程可以写为 (x﹣a)2+(y﹣b)2=r2 
综合应用:
如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使∠POA=30°,作PD⊥OA,垂足为D,延长PD交x轴于点B,连接AB.
①证明AB是⊙P的切线;
②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以点Q为圆心,OQ长为半径的⊙Q的方程;若不存在,说明理由.

【答案】解:问题拓展:设A(x,y)为⊙P上任意一点,
∵P(a,b),半径为r,
∴AP2=(x﹣a)2+(y﹣b)2=r2
故答案为:(x﹣a)2+(y﹣b)2=r2
综合应用:
①∵PO=PA,PD⊥OA,
∴∠OPD=∠APD.

在△POB和△PAB中,
∴△POB≌△PAB.
∴∠PAB=∠POB=90°.
∴PA⊥AB.
∵PA是半径,PA⊥AB于A,
∴AB是⊙P的切线.
②存在到四点O,P,A,B距离都相等的点Q.
当点Q在线段BP中点时,
∵∠POB=∠PAB=90°,
∴QO=QP=QA=QB.
∴此时点Q到四点O,P,A,B距离都相等.
∵PB⊥OA,∠POB=90°,∠POA=30°,
∴∠PBO=30°.
∴在Rt△POB中, ,PB=2PO=12.
∴B点坐标为
∵Q是PB中点,P(0,6),B
∴Q点坐标为

∴以Q为圆心,OQ为半径的⊙Q的方程为
【解析】问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;
综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;
②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA=30°.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将等边△ABD沿BD中点旋转180°得到△BDC.现给出下列命题:
①四边形ABCD是菱形;
②四边形ABCD是中心对称图形;
③四边形ABCD是轴对称图形;
④AC=BD.
其中正确的是(写上正确的序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=﹣1,与x轴的一个交点为(1,0),与y轴的交点为(0,3),则方程ax2+bx+c=0(a≠0)的解为(

A.x=1
B.x=﹣1
C.x1=1,x2=﹣3
D.x1=1,x2=﹣4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】是一块边长为1,周长记为P1的正三角形纸板,沿图的底边剪去一块边长为的正三角形纸板后得到图,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3)块纸板的周长为Pn,则P2018﹣P2017的值为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点F为弦AC的中点,连接OF并延长交⊙O于点D,过点D作⊙O的切线,交BA的延长线于点E.

(1)求证:AC∥DE;
(2)若OA=AE=4,求AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是等边△ABC内的一点,且PA=5,PB=4,PC=3,将△APB绕点B逆时针旋转,得到△CQB.求:

(1)点P与点Q之间的距离;
(2)求∠BPC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是抛物线形拱桥,当拱顶离水面2米时,水面宽4米.若水面下降1米,则水面宽度将增加多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:
在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:
尺规作图:过圆外一点作圆的切线。
已知:P为⊙O外一点。
求作:经过点P的⊙O的切线

小敏的作法如下:
如图:
①连接OP,作线段OP的垂直平分线MN交OP于C
②以点C为圆心,CO的长为半径作圆,交⊙O 于A,B两点
③作直线PA,PB所以直线PA,PB就是所求的切线

老师认为小敏的作法正确.
请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是;由此可证明直线PA,PB都是⊙O的切线,其依据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D﹣d.
(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:
A(﹣1,0)的距离跨度
B( ,﹣ )的距离跨度
C(﹣3,2)的距离跨度
②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是

(2)如图2,在平面直角坐标系xOy中,图形G2为以C(1,0)为圆心,2为半径的圆,直线y=k(x+1)上存在到G2的距离跨度为2的点,求k的取值范围.

(3)如图3,在平面直角坐标系xOy中,射线OA:y= x(x≥0),圆C是以3为半径的圆,且圆心C在x轴上运动,若射线OA上存在点到圆C的距离跨度为2,直接写出圆心C的横坐标xc的取值范围.

查看答案和解析>>

同步练习册答案