精英家教网 > 初中数学 > 题目详情

【题目】已知,在ABC中,∠A=90°,AB=AC,点DBC的中点.

(1)如图①,若点E、F分别为AB、AC上的点,且DEDF,求证:BE=AF;

(2)若点E、F分别为AB、CA延长线上的点,且DEDF,那么BE=AF吗?请利用图②说明理由.

【答案】(1)证明见解析;(2)BE=AF,证明见解析.

【解析】(1)连接AD,根据等腰三角形的性质可得出AD=BD、EBD=FAD,根据同角的余角相等可得出∠BDE=ADF,由此即可证出BDE≌△ADF(ASA),再根据全等三角形的性质即可证出BE=AF;

(2)连接AD,根据等腰三角形的性质及等角的补角相等可得出∠EBD=FAD、BD=AD,根据同角的余角相等可得出∠BDE=ADF,由此即可证出EDB≌△FDA(ASA),再根据全等三角形的性质即可得出BE=AF.

(1)证明:连接AD,如图①所示.

∵∠A=90°,AB=AC,

∴△ABC为等腰直角三角形,∠EBD=45°.

∵点DBC的中点,

AD=BC=BD,FAD=45°.

∵∠BDE+EDA=90°,EDA+ADF=90°,

∴∠BDE=ADF.

BDEADF中,

∴△BDE≌△ADF(ASA),

BE=AF;

(2)BE=AF,证明如下:

连接AD,如图②所示.

∵∠ABD=BAD=45°,

∴∠EBD=FAD=135°.

∵∠EDB+BDF=90°,BDF+FDA=90°,

∴∠EDB=FDA.

EDBFDA中,

∴△EDB≌△FDA(ASA),

BE=AF.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:

营业员

小丽

小华

月销售件数(件)

200

150

月总收入(元)

1400

1250

假设营业员的月基本工资为x元,销售每件服装奖励y元.

1)求xy的值;

2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件?

3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需315元;如果购买甲1件,乙2件,丙3件共需285元.某顾客想购买甲、乙、丙各一件共需   元.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴相交于A、B两点,且AB=2,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.

(1)求足球和篮球的单价各是多少元?

(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列关系式中正确的是( )

A.ac>0
B.b+2a<0
C.b2﹣4ac>0
D.a﹣b+c<0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图,在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点A坐标是,则经过第2019次变换后所得的A点坐标是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数y=﹣x2+bx+c的图象过点(﹣1,﹣8),(0,﹣3).
(1)求此二次函数的表达式,并用配方法将其化为y=a(x﹣h)2+k的形式;
(2)画出此函数图象的示意图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列命题中:①过一点有且只有一条直线与已知直线平行;②平方根与立方根相等的数有;③在同一平面内,如果,则;④直线外一点与直线上各点连接而成的所有线段中,最短线段的长是,则点到直线的距离是;⑤无理数包括正无理数、零和负无理数.其中真命题的个数是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将连续的奇数1357排成如图的数表,用如图所示的十字框可以框出5个数,这5个数之间将满足一定的关系,按照此方法,若十字框框出的5个数的和等于2015,则这5个数中最大数为______

查看答案和解析>>

同步练习册答案