14.[问题情境]
将一副直角三角板(Rt△ABC和Rt△DEF)按如图1所示的方式摆放,其中∠ACB=90°,CA=CB,∠FDE=90°,O是AB的中点,点D与点O重合,DF⊥AC于点M,DE⊥BC于点N,连接MN,试判断△OMN与△CBA是否相似,并说明理由.

[探究展示]
小明同学展示如下正确的解法:
解:△OMN∽△CBA,证明如下:
∵CA=CB,∴∠A=∠B.
∵O是AB的中点,∴OA=OB.
∵DF⊥AC于点M,DE⊥BC于点N,∴∠AMO=∠BNO=90°.
∵在△OMA与△ONB中,$\left\{\begin{array}{l}{∠AMO=∠BNO}\\{∠A=∠B}\\{OA=OB}\end{array}\right.$
∴△OMA≌△ONB(依据1).
∴OM=ON.
∵CA=CB,∴$\frac{OM}{CA}$=$\frac{ON}{CB}$.
又∵∠MON=∠ACB,
∴△OMN∽△CBA(依据2).
[反思交流]
(1)上述证明过程中的“依据1”和“依据2”分别指的是什么?
依据1:AAS;
依据2:两组对应边成比例且夹角相等的两个三角形相似.
(2)将图1中的Rt△DEF沿着射线BA的方向平移,使点D落在BA的延长线上,FD的延长线与CA的延长线垂直相交于点M,BC的延长线与DE垂直相交于点N,连接OM,ON,MN,如图2所示,试判断△OMN的形状,并注明你的结论;
(3)将图1中的Rt△DEF沿着射线AB的方向平移,使点D落在AB的延长线上,直线FD与直线CA垂直相交于点M,直线BC与直线DE垂直相交于点N,连接OM,ON,MN,如图3所示,试判断△OMN的形状,并注明你的结论.