精英家教网 > 初中数学 > 题目详情

【题目】已知:分别是的高,角平分线,,则的度数为________________.

【答案】2050

【解析】

分钝角三角形或锐角三角形两种情形分别求解即可.

解:如图,当ABC是钝角三角形时,

ADBD
∴∠ADC=90°
∵∠ACD=60°,∠ACD=B+BAC,∠B=20°
∴∠BAC=ACD -B =40°,∠CAD=90°-ACD=90°- 60°=30°
AE平分∠BAC
∴∠BAE=CAE=BAC=20°
∴∠EAD=CAD+CAE=30°+20°=50°
如图,当ABC是锐角三角形时,

∵∠C=60°,∠B=20°
∴∠BAC=100°,∠BAD= =90°-20°=70°
AE平分∠BAC
∴∠BAE=BAC=50°
∴∠EAD=DAB-BAE=70°-50°=20°.
综上所述:∠EAD=50°20°
故答案为:5020

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】□ABCD中,BECD于点E,点FAB上,且AF=CE,连接DF

(1)求证:四边形BEDF是矩形;

(2)连接CF,若CF平分∠BCD,且CE=3BE=4,求矩形BEDF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展了为期一周的“敬老爱亲”社会活动,为了解情况,学生会随机调查了部分学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A0.5x1B1x1.5C1.5x2D2x2.5E2.5x3,制作成两幅不完整的统计图(如图).

请根据图中提供的信息,解答下列问题:

1)学生会随机调查了   名学生;

2)补全频数分布直方图;

3)若全校有900名学生,估计该校在这次活动中做家务的时间不少于2.5小时的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,D是BC边上一点,以DB为直径的⊙O经过AB的中点E,交AD的延长线于点F,连接EF.

(1)求证:∠1=∠F;

(2)若sinB=,EF=2,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,添加以下条件,不能判定的是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABC是等边三角形,点DE分别是边BCCA上的点,且BD=CEADBE相交于点O

(1)求证:BAE≌△ACD;

(2)求AOB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边ABC中,D为射线BC上一点,CE是∠ACB外角的平分线,∠ADE=60°EFBCF

1)如图1,若点D在线段BC上,证明:∠BAD=EDC

2)如图1,若点D在线段BC上,证明:①AD=DE;②BC=DC+2CF(提示:构造全等三角形);

3)如图2,若点D在线段BC的延长线上,直接写出BCDCCF三条线段之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB3BC2,以点A为旋转中心,逆时针旋转矩形ABCD,旋转角为αα180°),得到矩形AEFG,点B、点C、点D的对应点分别为点E、点F、点G

1)如图①,当点E落在DC边上时,直写出线段EC的长度为   

2)如图②,当点E落在线段CF上时,AEDC相交于点H,连接AC

①求证:ACD≌△CAE

②直接写出线段DH的长度为  

3)如图③设点P为边FG的中点,连接PBPE,在矩形ABCD旋转过程中,BEP的面积是否存在最大值?若存在请直接写出这个最大值;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一平面直角坐标系中,函数y=mx+m和函数y=-mx2+2x+2(m是常数,且m≠0)的图象可能是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案