【题目】老师在课堂上出了一个问题:若点A(﹣2,y1),B(1,y2)和C(4,y3)都在反比例函数y=的图象上,比较y1 , y2 , y3的大小.
小明是这样思考的:当k<0时,反比例函数的图象是y随x的增大而增大的,并且﹣2<1<4,所以y1<y2<y3 .
你认为小明的思考 (填“正确”和“不正确”),理由是 .
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.
(1)从中任意摸出1个球,恰好摸到红球的概率是多少;
(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点0为坐标原点,抛物线y=ax2+bx+4与y轴交于点A,与x轴交于点B、C(点B在点C左侧),且OA=OC=4OB.
(1)求a,b的值;
(2)连接AB、AC,点P是抛物线上第一象限内一动点,且点P位于对称轴右侧,
过点P作PD⊥AC于点E,分别交x、y轴于点D、H,过点P作PG∥AB交AC于点F,交x轴于点G,设P(x,y),线段DG的长为d,求d与x之间的函数关系(不要求写出自变量x的取值范围);
(3)在(2)的条件下,当时,连接AP并延长至点M,连接HM交AC于点S,点R是抛物线上一动点,当△ARS为等腰直角三角形时.求点R的坐标和线段AM的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明、小强从同一地点A同时反向(小明按逆时针方向,小强按顺时针方向)绕环形跑道跑步,小明的速度为4a 米/秒,小强的速度为5a 米/秒(a>0),经过t秒两人第一次相遇.
⑴ 这条环形跑道的周长为多少米?
⑵ 两人第一次相遇后,小明、小强继续按原方向绕跑道跑步. ① 小明又经过几秒再次到达A点?
② 在①中当小明到达A点时,小强是否已经过A点?如果已经过,则小强经过A点后又走了多少米?如果没有经过,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,点C在线段AB上,AC = 8 cm,CB = 6 cm,点M、N分别是AC、BC的中点.
(1)求线段MN的长.
(2)若C为线段AB上任意一点,满足AC+CB=a(cm),其他条件不变,你能猜想出MN的长度吗?并说明理由.
(3)若C在线段AB的延长线上,且满足AC-CB=b(cm),M、N分别为AC、BC的中点,你能猜想出MN的长度吗?请画出图形,写出你的结论,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角三角形和中,点为它们的直角顶点,当与有重叠部分时:
(1)①连接,如图1,求证: ;
②连接,如图2,求证: ;
(2)当与无重叠部分时:连接,如图3,当, 时,计算四边形面积的最大值,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=x+2的图象与反比例函数y=(k≠0)的图象交于A,B两点,且点A的坐标为(1,m).
(1)求反比例函数y=(k≠0)的表达式;
(2)若P是y轴上一点,且满足△ABP的面积为6,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 是边长为的等边三角形,边在射线上,且,点从点出发,沿OM的方向以1cm/s的速度运动,当D不与点A重合时,将绕点C逆时针方向旋转60°得到,连接DE.
(1)如图1,求证: 是等边三角形;
(2)如图2,当6<t<10时,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.
(3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校计划购买篮球、排球共20个,购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同。
(1)篮球和排球的单价各是多少元?
(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com