精英家教网 > 初中数学 > 题目详情
计算:
(1-
1
22
)×(1-
1
32
)
=
2
3
2
3

(1-
1
22
)×(1-
1
32
)×(1-
1
42
)
=
5
8
5
8

(1-
1
22
)×(1-
1
32
)×…×(1-
1
92
)×(1-
1
102
)
=
11
20
11
20

(1-
1
22
)×(1-
1
32
)×…×(1-
1
(n-1)2
)×(1-
1
n2
)
=
n+1
2n
n+1
2n
分析:计算出前两个式子的值,并求出(1-
1
22
)×(1-
1
32
)×(1-
1
42
)×(1-
1
52
)的值,找出其中结果的规律,依此类推得到,即可得到后两个式子的结果.
解答:解:(1-
1
22
)×(1-
1
32
)=
3
4
×
8
9
=
2
3

(1-
1
22
)×(1-
1
32
)×(1-
1
42
)=
2
3
×
15
16
=
5
8
=
4+1
2×4

(1-
1
22
)×(1-
1
32
)×(1-
1
42
)×(1-
1
52
)=
5
8
×
24
25
=
3
5
=
5+1
2×5

依此类推:(1-
1
22
)×(1-
1
32
)×…×(1-
1
92
)×(1-
1
102
)=
10+1
2×10
=
11
20

(1-
1
22
)×(1-
1
32
)×…×(1-
1
(n-1)2
)×(1-
1
n2
)=
n+1
2n

故答案为:
2
3
5
8
11
20
n+1
2n
点评:此题考查了分式的混合运算,属于规律型试题,弄清题中的规律是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

计算:(1-
1
22
)
(1-
1
32
)
(1-
1
42
)
(1-
1
52
)
(1-
1
62
)

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(1-
1
22
)×(1-
1
32
)×…×(1-
1
20092
)×(1-
1
20102
)

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(1-
1
22
)(1-
1
32
)(1-
1
42
)(1-
1
20042
)

查看答案和解析>>

科目:初中数学 来源: 题型:

利用因式分解计算:(1-
1
22
)(1-
1
32
)(1-
1
42
)…(1-
1
92
)(1-
1
102
)

查看答案和解析>>

科目:初中数学 来源: 题型:

计算
1+
1
12
+
1
22
+
1+
1
22
+
1
32
+
1+
1
32
+
1
42
+…+
1+
1
20102
+
1
20112
=
 

查看答案和解析>>

同步练习册答案