精英家教网 > 初中数学 > 题目详情

【题目】如图,AB=AD,添加下列一个条件后,仍无法确定△ABC≌△ADC的是(
A.BC=CD
B.∠BAC=∠DAC
C.∠B=∠D=90°
D.∠ACB=∠ACD

【答案】D
【解析】解:A、AB=AD、AC=AC、BC=CD,符合全等三角形的判定定理SSS,能推出△ABC≌△ADC,故本选项不符合题意; B、AB=AD、∠BAC=∠DAC、AC=AC,符合全等三角形的判定定理SAS,能推出△ABC≌△ADC,故本选项不符合题意;
C、AB=AD、AC=AC、∠B=∠D=90°,符合全等三角形的判定定理HL,能推出△ABC≌△ADC,故本选项不符合题意;
D、AB=AD、AC=AC、∠ACB=∠ACD,不符合全等三角形的判定定理,不能推出△ABC≌△ADC,故本选项符合题意;
故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某文具店今年1月份购进一批笔记本,共2290本,每本进价为10元,该文具店决定从2月份开始进行销售,若每本售价为11元,则可全部售出;且每本售价每增加0.5元,销量就减少15本.

(1)若该种笔记本在2月份的销售量不低于2200本,则2月份售价应不高于多少元?

(2)由于生产商提高工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量, 进行了销售调整,售价比2月份在(1)的条件下的最高售价减少了m%,结果3月份的销量比2月份在(1)的条件下的最低销量增加了m%,3月份的销售利润达到 6600元,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分12分)已知:点EAB边上的一个动点.

(1)如图1,若△ABC是等边三角形,以CE为边在BC的同侧作等边△DEC ,连结AD.试比较∠DAC与∠B的大小,并说明理由;

(2)如图2,若△ABC中,AB=AC,以CE为底边在BC的同侧作等腰△DEC ,且

DEC∽△ABC,连结AD.试判断ADBC的位置关系,并说明理由;

(3)如图3,若四边形ABCD是边长为2的正方形,以CE为边在BC的同侧作正方形ECGF.

①试说明点G一定在AD的延长线上;

②当点EAB边上由点B运动至点A时,点F随之运动,求点F的运动路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列计算正确的是( )
A.﹣3a+4a=﹣7a
B.4m+2n=6mn
C.5x+4x=20x2
D.6xy3﹣2xy3=4xy3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果两个三角形的两边及其中一边的对角对应相等那么这两个三角形全等其逆命题是_______________________这个逆命题是________命题

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知AC是矩形纸片ABCD的对角线,AB =3,BC =4.现将矩形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移,得到图②中△A′BC′,当四边形A′ECF是菱形时,平移距离AA′的长是___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:三边长和面积都是整数的三角形称为“整数三角形”.

数学学习小组的同学从32根等长的火柴棒(每根长度记为1个单位)中取出若干根,首尾依次相接组成三角形,进行探究活动.

小亮用12根火柴棒,摆成如图所示的“整数三角形”;

小颖分别用24根和30根火柴棒摆出直角“整数三角形”;

小辉受到小亮、小颖的启发,分别摆出三个不同的等腰“整数三角形”.

⑴请你画出小颖和小辉摆出的“整数三角形”的示意图;

⑵你能否也从中取出若干根,按下列要求摆出“整数三角形”,如果能,请画出示意图;如果不能,请说明理由.

①画出等边“整数三角形”;

②摆出一个非特殊(既非直角三角形,也非等腰三角形)“整数三角形”.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三个连续正整数的和不大于12.这样的正整数有__________组.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需(
A.AB=DC
B.OB=OC
C.∠C=∠D
D.∠AOB=∠DOC

查看答案和解析>>

同步练习册答案