精英家教网 > 初中数学 > 题目详情

【题目】如图,过反比例函数y=(x>0)的图象上一点A作x轴的平行线,交双曲线y=-(x<0)于点B,过B作BC∥OA交双曲线y=- (x<0)于点D,交x轴于点C,连接AD交y轴于点E,若OC=3,求OE的长.

【答案】

【解析】

先连接OB,根据比例系数k的几何意义,求得OF=3,由此得到A(2,3),B(-1,3),再求得直线OA的解析式为y=x,直线BC为y=x+,再根据解方程组可得D(-2,),最后运用待定系数法求得AD解析式为y=x+,进而得到点E的坐标即可.

如图所示,连接OB,

则△AOB的面积=×|-3|+×|6|=

由AB∥CO,AO∥BC,可得四边形ABCO是平行四边形,

∴AB=CO=3,

∴由×AB×OF=,可得OF=3,

在y=(x>0)中,令y=3,可得x=2,即A(2,3),

在y=-(x<0)中,令y=3,可得x=-1,即B(-1,3),

由A(2,3)可得,直线OA的解析式为y=x,

可设直线BC为y=x+b,则将B(-1,3)代入可得

3=-+b,解得b=

故BC为y=x+

解方程组可得D(-2,),

设直线AD解析式为y=mx+n,则

将D(-2,),A(2,3)代入可得

解得

∴AD解析式为y=x+

令x=0,则y=,即E(0,),

∴OE的长为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2 ,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数y= 的图象过点A(1,2).
(1)求该函数的解析式;
(2)过点A分别向x轴和y轴作垂线,垂足为B和C,求四边形ABOC的面积;
(3)求证:过此函数图象上任意一点分别向x轴和y轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数y=-x与函数y=-的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D,求四边形ACBD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】8分如图在平面直角坐标系中菱形ABCD的顶点C与原点O重合点B在y轴的正半轴上点A在函数y=k>0,x>0)的图象上点D的坐标为(4,3).

(1)求k的值;

(2)若将菱形ABCD沿x轴正方向平移当菱形的顶点D落在函数y=k>0,x>0)的图象上时求菱形ABCD沿x轴正方向平移的距离

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.

(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;
(3)若抛物线上有一动点P,使三角形ABP的面积为6,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.

(1)求函数y=和y=kx+b的解析式;

(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一个棱长为的正方体的每个面等分成个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去个小正方体),所得到的几何体的表面积是(

A. 78 B. 72 C. 54 D. 48

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,,垂足为G,若,则AE的边长为  

A. B. C. 4 D. 8

查看答案和解析>>

同步练习册答案