【题目】(8分)如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=(k>0,x>0)的图象上,点D的坐标为(4,3).
(1)求k的值;
(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.
【答案】(1)k=32;
(2)菱形ABCD平移的距离为.
【解析】
试题(1)由题意可得OD=5,从而可得点A的坐标,从而可得k的值;
(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D’点处,由题意可知D’的纵坐标为3,从而可得横坐标,从而可知平移的距离.
试题解析:(1)过点D作x轴的垂线,垂足为F,
∵ 点D的坐标为(4,3), ∴ OF=4,DF=3,∴ OD=5, ∴ AD=5,∴ 点A坐标为(4,8), ∴ k=xy=4×8=32,∴ k=32;
(2)将菱形ABCD沿x轴正方向平移,使得点D落在函数(x>0)的图象D’点处,过点D’做x轴的垂线,垂足为F’.
∵DF=3,∴D’F’=3,∴点D’的纵坐标为3,∵点D’在的图象上,∴ 3 =,解得=, 即 ∴菱形ABCD平移的距离为.
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=12cm,且,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由点B向C点运动,同时,点Q在线段AC上由点A向C点以4cm/s的速度运动.
(1)若点P、Q两点分别从B、A两点同时出发,经过2秒后,△BPD与△CQP是否全等,请说明理由;
(2)若点P、Q两点分别从B、A两点同时出发,△CPQ的周长为18cm,问:经过几秒后,△CPQ是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒4个单位长度的速度在数轴上由A向B运动,当点P到达点B后立即返回,仍然以每秒4个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒).
(1)求t=1时点P表示的有理数;
(2)求点P与点B重合时的t值;
(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);
(4)当点P表示的有理数与原点的距离是2个单位长度时,请求出所有满足条件的t值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线y=x与反比例函数y=(k>0)的图象交于A,B两点,且点A的横坐标为4.
(1)求k的值.
(2)若反比例函数y=的图象上一点C的纵坐标为8,求△AOC的面积.
(3)若过原点O的另一条直线l交反比例函数y= (k>0)的图象于P,Q两点(点P在第一象限),以A,B,P,Q为顶点组成的四边形面积为24,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=k1x+7(k1<0)与x轴交于点A,与y轴交于点B,与反比例函数y= (k2>0)在第一象限的图象交于C,D两点,点O为坐标原点,△AOB的面积为,点C的横坐标为1.
(1)求反比例函数的解析式;
(2)如果一个点的横、纵坐标都是整数,那么我们就称这个点为“整点”,请求出图中阴影部分(不含边界)所包含的所有整点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过反比例函数y=(x>0)的图象上一点A作x轴的平行线,交双曲线y=-(x<0)于点B,过B作BC∥OA交双曲线y=- (x<0)于点D,交x轴于点C,连接AD交y轴于点E,若OC=3,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(-4, ),B(-1,2)是一次函数y=kx+b与反比例函数y= (m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D。
(1)、根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)、求一次函数解析式及m的值;
(3)、P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计.图(1)与图(2)是整理数据后绘制的两幅不完整的统计图.以下结论不正确的是( )
A. 由这两个统计图可知喜欢“科普常识”的学生有90人
B. 若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生有360人
C. 由这两个统计图不能确定喜欢“小说”的人数
D. 在扇形统计图中,“漫画”所在扇形的圆心角为72°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在军事上,常用时钟表示方向角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向.在一次反恐演习中,甲队员在A处掩护,乙队员从A处沿12点方向以40米/分的速度前进,2分钟后到达B处.这时,甲队员发现在自己的1点方向的C处有恐怖分子,乙队员发现C处位于自己的2点方向(如图).假设距恐怖分子100米以外为安全位置.
(1)乙队员是否处于安全位置?为什么?
(2)因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置.为此,乙队员至少应用多快的速度撤离?(结果精确到个位.参考数据: ,.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com