精英家教网 > 初中数学 > 题目详情
(2009•朝阳区一模)抛物线与x轴交于A(-1,0)、B两点,与y轴交于点C(0,-3),抛物线顶点为M,连接AC并延长AC交抛物线对称轴于点Q,且点Q到x轴的距离为6.
(1)求此抛物线的解析式;
(2)在抛物线上找一点D,使得DC与AC垂直,求出点D的坐标;
(3)抛物线对称轴上是否存在一点P,使得S△PAM=3S△ACM,若存在,求出P点坐标;若不存在,请说明理由.
【答案】分析:(1)设直线AC的解析式为y=kx-3,把已知坐标代入可解k的值.
(2)依题意得出∠ACO=∠ANC,然后求出ON的值以及直线CN的解析式.最后可求出x,y的值.
(3)设抛物线的对称轴交x轴于点E,依题意,得AE,EM,AM的值.设P(1,m),分情况讨论P的坐标.
解答:解:(1)设直线AC的解析式为y=kx-3,
把A(-1,0)代入得k=-3
∴直线AC的解析式为y=-3x-3
依题意知,点Q的纵坐标是-6
把y=-6代入y=-3x-3中,
解得x=1
∴点Q(1,-6)
∵点Q在抛物线的对称轴上
∴抛物线的对称轴为直线x=1
设抛物线的解析式为y=a(x-1)2+n
由题意,

解得
∴抛物线的解析式为y=(x-1)2-4.

(2)如图1,过点C作AC的垂线交抛物线于点D
交x轴于点N,则∠ACO=∠ANC
∴tan∠ANC=tan∠ACO

∵OA=1,OC=3
∴ON=9
∴点N的坐标为(9,0)
可求得直线CN的解析式为

解得
即点D的坐标为().

(3)设抛物线的对称轴交x轴于点E,依题意,得
AE=2,EM=4,
∵S△ACM=S△AOC+S梯形OCME-S△AME=1

又S△PAM=3S△ACM
∴PM=3
设P(1,m)
①当点P在点M上方时,PM=m+4=3
∴m=-1
∴P(1,-1)
②当点P在点M下方时,PM=-4-m=3
∴m=-7
∴P(1,-7)
综上所述,点P的坐标为P1(1,-1),P2(1,-7).
点评:本题难度较大,考查的是二次函数图象与解析式的灵活运用,一般这样题目都是作为压轴题出现,考生平时应多积累二次函数的综合知识.
练习册系列答案
相关习题

科目:初中数学 来源:2009年北京市朝阳区中考数学一模试卷(解析版) 题型:解答题

(2009•朝阳区一模)抛物线与x轴交于A(-1,0)、B两点,与y轴交于点C(0,-3),抛物线顶点为M,连接AC并延长AC交抛物线对称轴于点Q,且点Q到x轴的距离为6.
(1)求此抛物线的解析式;
(2)在抛物线上找一点D,使得DC与AC垂直,求出点D的坐标;
(3)抛物线对称轴上是否存在一点P,使得S△PAM=3S△ACM,若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年北京市朝阳区中考数学一模试卷(解析版) 题型:解答题

(2009•朝阳区一模)如图,点A在反比例函数的图象与直线y=x-2交于点A,且A点纵坐标为1,求该反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市十五中全真模拟考试数学试卷(解析版) 题型:填空题

(2009•朝阳区一模)已知抛物线y=x2-2(m+1)x+m2与x轴的两个交点的横坐标均为整数,且m<5,则整数m的值为   

查看答案和解析>>

科目:初中数学 来源:2009年北京市朝阳区中考数学一模试卷(解析版) 题型:解答题

(2009•朝阳区一模)响应“绿色环保,畅通出行”的号召,越来越多的市民选择乘地铁出行,为保证市民方便出行,我市新建了多条地铁线路,与旧地铁线路相比,新建地铁车站出入口上下楼梯的高度普遍增加,已知原楼梯BD长20米,在楼梯水平长度(BC)不发生改变的前提下,楼梯的倾斜角由30°增大到45°,那么新修建的楼梯高度将会增加多少米?(结果保留整数,参考数据:

查看答案和解析>>

同步练习册答案