精英家教网 > 初中数学 > 题目详情

【题目】已知A、B两地相距4km,上午8:00时,亮亮从A地步行到B地,8:20时芳芳从B地出发骑自行车到A地,亮亮和芳芳两人离A地的距离S(km)与亮亮所用时间t(min)之间的函数关系如图所示,芳芳到达A地时间为( )

A.8:30
B.8:35
C.8:40
D.8:45

【答案】C
【解析】解:由题意可知:

设亮亮S与t的函数关系式为:S=mt(0≤t≤60),

把t=60,S=4代入S=mt,

∴4=60m,

∴m=

∴S= t,

当S=2时,

此时t=30,

设芳芳S与t的函数关系式为:S=at+b(t≥20),

把t=30,S=2和t=20,S=4代入S=at+b,

解得:

∴S=﹣ t+8,

令S=0代入S=﹣ t+8,

∴t=40,

故芳芳到达A地的时间为8点40分

所以答案是:C

【考点精析】本题主要考查了函数的图象的相关知识点,需要掌握函数的图像是由直角坐标系中的一系列点组成;图像上每一点坐标(x,y)代表了函数的一对对应值,他的横坐标x表示自变量的某个值,纵坐标y表示与它对应的函数值才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】早晨小欣与妈妈同时从家里出发,步行与自行车向相反方向的两地上学与上班,如图是他们离家的路程与时间分钟之间的函数图象,妈妈骑车走了10分钟时接到小欣的电话,立即以原速度返回并前往学校,若已知小欣步行的速度为50分钟,并且妈妈与小欣同时到达学校完成下列问题:

在坐标轴两处的括号内填入适当的数据;

求小欣早晨上学需要的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB= ,E是BC的中点,AE⊥BD于点F,则CF的长是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,O为坐标原点,抛物线y=a(x﹣h)2﹣4(a>0)与x轴分别交于原点O、A两点,点A在x轴的正半轴上,顶点为D,直线y= x交抛物线于B点,过B作BE∥x轴交抛物线另一点E,交对称轴于F.

(1)当DF=4a时,求BE的长.
(2)如图2,连AD,连接AD绕点A旋转交直线OB于点G,点D的对应点为G,当OG=2时,求a的值;
(3)在(2)的条件下,当0<a<1时,以OB为直径作圆交x轴下方抛物线于点P,求点P坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于( )

A.69°
B.42°
C.48°
D.38°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,过点C的直线MNABDAB边上一点,过点DDEBC,交直线MNE,垂足为F,连接CDBE.

(1)求证:CEAD

(2)当DAB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)若DAB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】图a、图b是两张形状、大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,点A、B在小正方形的顶点上.

(1)在图a中画出△ABC(点C在小正方形的顶点上),使△ABC是等腰三角形且△ABC为钝角三角形;
(2)在图b中画出△ABD(点D在小正方形的顶点上),使△ABD是等腰三角形,且tan∠ABD=1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司员工的月工资如下表:

员工

经理

副经理

职员A

职员B

职员C

职员D

职员E

职员F

职员G

月工资/

4800

3500

2000

1900

1800

1600

1600

1600

1000

则这组数据的平均数、众数、中位数分别为( 

A. 2200 1800 1600 B. 2000 1600 1800

C. 2200 1600 1800 D. 1600 1800 1900

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学学生步行到郊外旅行,七年级班学生组成前队,步行速度为4千米小时,七班的学生组成后队,速度为6千米小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米小时.

后队追上前队需要多长时间?

后队追上前队的时间内,联络员走的路程是多少?

七年级班出发多少小时后两队相距2千米?

查看答案和解析>>

同步练习册答案