精英家教网 > 初中数学 > 题目详情
已知:如图所示,△ABC是等边三角形,D是AC中点,延长BC至E,使CE=CD,连接DE,
①试判断△DBE是什么三角形?并证明你的结论.
②若BC=2.2,求S△ABD(结果保留三个有效数字.提示:BD=
3
2
AB,
3
=1.732)
分析:(1)根据等边三角形的性质得到∠ABC=∠DCB=60°,根据等腰三角形的三线合一由D是AC中点得到BD平分∠ABC,则∠DBC=
1
2
∠ABC=30°,由CE=CD得到∠CDE=∠E,而∠DCB=∠CDE+∠E=60°,计算得∠E=30°,于是∠DBE=∠E,根据等腰三角形的判定方法即可得到△DBE是等腰三角形;
(2)根据等边三角形的性质得到BD⊥AC,AB=AC=BC,再根据提示有BD=
3
2
AB,则BD=
3
2
BC=2.2×
3
2
=1.1×
3
,AD=1.1,然后根据三角形面积公式计算即可.
解答:解:(1)△DBE是等腰三角形.理由如下:
∵△ABC是等边三角形,D是AC中点,
∴∠ABC=∠DCB=60°,BD平分∠ABC,
∴∠DBC=
1
2
∠ABC=30°,
∵CE=CD,
∴∠CDE=∠E,
而∠DCB=∠CDE+∠E=60°,
∴∠E=30°,
∴∠DBE=∠E,
∴△DBE是等腰三角形;
(2)∵△ABC是等边三角形,D是AC中点,
∴BD⊥AC,AB=AC=BC,
而BD=
3
2
AB,
∴BD=
3
2
BC=2.2×
3
2
=1.1×
3
,AD=1.1,
∴SABD=
1
2
×BD×AD=
1
2
×1.1×
3
×1.1≈8.68.
点评:本题考查了等边三角形的性质:等边三角形的三边都相等,三个角都等于60°.也考查了等腰三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、已知:如图所示,直线a,b都与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判定a∥b的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图所示,Rt△ABC的周长为4+2
3
,斜边AB的长为2
3
,则Rt△ABC的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知:如图所示,四边形ABCD是矩形,对角线AC,BD相交于点O,CE∥DB,交AB的延长线于点E,AC与CE相等吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、已知:如图所示,在△ABC中,AB=AC,E在CA延长线上,AE=AF,AD是高,试判断EF与BC的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图所示,正比例函数y=ax的图象与反比例函数y=
kx
的图象交于点A(3,2).
(1)试确定上述正比例函数和反比例函数的表达式;
(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,求M点坐标.

查看答案和解析>>

同步练习册答案