【题目】已知二次函数y=ax(x﹣3)+c(a<0,0≤x≤3),反比例函数y=(x>0,k>0)图象如图1所示,反比例函数y=(x>0,k>0)的图象经过点P(m,n),PM⊥x轴,垂足为M,PN⊥y轴,垂足为N;且OMON=12.
(1)求k的值;
(2)当c=0时,计算抛物线与x轴的两个交点之间的距离.
(3)确定二次函数y=ax(x﹣3)+c(a<0,0≤x≤3)对称轴.
(4)如图2,当a=﹣1时,抛物线y=ax(x﹣3)+c(a<0;0≤x≤3)有一时刻恰好经过P点,且此时抛物线与双曲线y=(x>0,k>0)有且只有一个公共点P(如图2所示),我们不妨把此时刻的c记作c1,请直接写出抛物线y=ax(x﹣3)+c(a<0,0≤x≤3)的图象与双曲线y=(x>0,k>0)的图象有一个公共点时c的取值范围.(温馨提示:c1作为已知数,可直接应用哦!)
【答案】(1)12;(2)3;(3)对称轴为x=;(4)c>4或c=c1.
【解析】
(1)点P(m,n)在反比例函数y=上,OMON=12,k=12;
(2)当c=0时,y=ax(x﹣3),函数与x轴两个交点为(0,0),(3,0);
(3)y=ax(x﹣3)+c=ax2﹣3ax+c,函数的对称轴为x=;
(4)当x=3时c==4,c>4时,抛物线与反比例函数有一个交点,当c=c1时,抛物线与反比例函数有一个交点.
解:(1)∵点P(m,n)在反比例函数y=上,OMON=12,
∴mn=12,
∴k=12;
(2)当c=0时,y=ax(x﹣3),
∴函数与x轴两个交点为(0,0),(3,0),
∴两个交点间距离为3;
(3)y=ax(x﹣3)+c=ax2﹣3ax+c,
∴x=,
∴函数的对称轴为x=;
(4)∵a=﹣1,
∴y=﹣x(x﹣3)+c,
当x=3时c==4,
∴c>4时,抛物线与反比例函数有一个交点,
当c=c1时,抛物线与反比例函数有一个交点,
综上所述:抛物线与反比例函数有一个交点时,c>4或c=c1.
科目:初中数学 来源: 题型:
【题目】(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1)。
(1)以O点为位似中心在y轴的左侧将△OBC放大到两倍画出图形。
(2)写出B、C两点的对应点B、C的坐标;
(3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知点B的坐标为(8,0).
(1)求抛物线的解析式;
(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y轴,求MN的最大值;
(3)在抛物线的对称轴上是否存在点Q使得△ACQ为等腰三角形?若存在,请直接写出符合点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.
⑴用含t的代数式表示:AP= ,AQ= .
⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ=,那么当点P运动一周时,点Q运动的总路程为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10m,到达B点,在B处测得树顶C的仰角高度为60°(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度(结果精确到0.1m).(参考数据:≈1.414,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)如果∠BAC=60°,AD=4,求AC长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,要证明平行四边形ABCD为正方形,那么我们需要在四边形ABCD是平行四边形的基础上,进一步证明( )
A.AB=AD且AC⊥BDB.AB=AD且AC=BDC.∠A=∠B且AC=BDD.AC和BD互相垂直平分
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的x、y的部分对应值如表:
x | ﹣1 | 0 | 1 | 2 | 3 |
y | 5 | 1 | ﹣1 | ﹣1 | 1 |
(1)抛物线的对称轴是_____;
(2)不等式ax2+bx+c﹣1<0的解集是_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com