【题目】如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为( ).
A.
B.2
C.
D.1
【答案】A
【解析】解答: 连接AE,OD、OE.
∵AB是直径,
∴∠AEB=90°,
又∵∠BED=120°,
∴∠AED=30°,
∴∠AOD=2∠AED=60°.
∵OA=OD
∴△AOD是等边三角形,
∴∠OAD=60°,
∵点E为BC的中点,∠AEB=90°,
∴AB=AC,
∴△ABC是等边三角形,边长是4.△EDC是等边三角形,边长是2.
∴∠BOE=∠EOD=60°,
∴ 弧BE和弦BE围成的部分的面积=弧DE和弦DE围成的部分的面积.
∴阴影部分的面积=S△EDC= 故选:A.
首先证明△ABC是等边三角形.则△EDC是等边三角形,边长是2.而弧BE和弦BE围成的部分的面积=弧DE和弦DE围成的部分的面积.据此即可求解.
【考点精析】认真审题,首先需要了解扇形面积计算公式(在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2)).
科目:初中数学 来源: 题型:
【题目】如图,图中与∠E是同位角的有_________________,与∠D是内错角的有________________,与∠E是同旁内角的有______________________,与∠D是同旁内角的有_______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学习有理数的乘法后,老师给同学们这样一道题目:计算:49×(﹣5),看谁算的又快又对,有两位同学的解法如下:
小明:原式=﹣×5=﹣=﹣249;
小军:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)对于以上两种解法,你认为谁的解法较好?
(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;
(3)用你认为最合适的方法计算:19×(﹣8)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,甲、乙两船从港口A同时出发,甲船以30海里/时的速度向北偏东35°的方向航行,乙船以40海里/时的速度向另一方向航行,2小时后,甲船到达C岛,乙船到达B岛,若C,B两岛相距100海里,则乙船航行的方向是南偏东多少度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了表示对老师的敬意,张昊同学特地做了两张大小不同的正方形的画送给老师,其中一张面积为800 cm2,另一张面积为450 cm2.他想:如果再用金色细彩带把画的边镶上会更漂亮.他手上现有1.2 m长的金色细彩带.请你帮他算一算,他的金色细彩带够用吗?如果不够用,还需买多少厘米的金色细彩带?(≈1.414,结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某气球内充满了一定质量的气球,当温度不变时,气球内气球的压力p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示(千帕是一种压强单位)
(1)写出这个函数的解析式;
(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕;
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米。
【答案】(1);(2)(千帕);(3)()。
【解析】试题分析:(1)、根据物理公式,温度=气球内气体的气压(P)×气球体积(V),将A(1.5,64)代入求温度,确定反比例函数关系式; (2)、将 v=0.8代入(1)中的函数式求p即可; (3)、将P144代入(1)中的函数式求V,再回答问题.
试题解析:(1)、由题意得,温度=PV=1.5×64=96,
∴P=
(2)当V=0.8时,P=120(千帕)
(3)∵当气球内的气压大于144千帕时,气球将爆炸,
∴P144,
∴144,
解得:
考点:反比例函数的应用
【题型】解答题
【结束】
21
【题目】水产公司有一种海产品共2 104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:
第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | 第7天 | 第8天 | |
售价x(元 | 400 | 250 | 240 | 200 | 150 | 125 | 120 | |
销售量y(千克) | 30 | 40 | 48 | 60 | 80 | 96 | 100 |
观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.
(1)写出这个反比例函数的解析式,并补全表格;
(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?
(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com