精英家教网 > 初中数学 > 题目详情
如图①,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,点A、B、E在同一条直线上,P是线段DF的中点,连接PG、PC.

(1)求证:PG⊥PC,PG=
3
PC;
(2)将图①中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,其他条件不变(如图②),(1)中的结论仍然成立,请你说明理由;
(3)若图①中∠ABC=∠BEF=α(0<α<180°),将菱形BEFG绕点B顺时针旋转任意角度,其他条件不变(如图③),判断PG与PC的位置关系和数量关系,并说明理由.
分析:(1)延长GP,交CD于点H,求出CH=CG,根据等腰三角形的性质即可推出CP⊥GP,求出∠CGP=30°,解直角三角形即可求出CP和PG的数量关系.
(2)思路同上,延长GP交AD于点H,连接CH,CG,本题中除了如(1)中证明△GFP≌△HDP(得到P是HG中点)外还需证明△HDC≌△GBC(得出三角形CHG是等腰三角形).
(3)证明GP⊥CP和(2)一样,求出∠CGP=
1
2
α,解直角三角形即可求出CP和PG的数量关系.
解答:(1)证明:延长GP,交CD于点H,
∵四边形ABCD与四边形BEFG是菱形,
∴CD∥AB∥GF,
∴∠PDH=∠PFG,∠DHP=∠PGF,
∵P是线段DF的中点,
∴DP=PF,
在△DPH和△FPG中,
∠PDH=∠PFG
∠DHP=∠PGF
DP=PF

∴△DPH≌△FPG(AAS),
∴PH=PG,DH=GF,
∵CD=BC,GF=GB=DH,
∴CH=CG,
∴CP⊥HG,
即PG⊥PC;
∵菱形ABCD,∠ABC=60°,
∴CD∥AB,
∴∠DCB=120°,
∵CH=CG,
∴∠CGP=∠CHP=30°,
即在Rt△CPG中,tan30°=
CP
GP

∴PG=
3
PC.

(2)猜想:(1)中的结论没有发生变化.
证明:如图,延长GP交AD于点H,连接CH,CG,
∵P是线段DF的中点,
∴FP=DP,
∵AD∥FG,
∴∠GFP=∠HDP,
在△GFP和△HDP中
∠GFP=∠HDP
PF=DP
∠GPF=∠DPH

∴△GFP≌△HDP(ASA),
∴GP=HP,GF=HD,
∵四边形ABCD是菱形,
∴CD=CB,∠HDC=∠ABC=60°.
由∠ABC=∠BEF=60°,且菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,
∴∠GBC=60°.
∴∠HDC=∠GBC.
∵四边形BEFG是菱形,
∴GF=GB=DH,
在△HDC和△GBC中
DC=BC
∠HDC=∠CBG
BG=DH

∴△HDC≌△GBC(SAS).
∴∠DCH=∠GCB,CH=CG,
∵PH=PG,
∴PG⊥PC,
∵菱形ABCD,∠ABC=60°,
∴CD∥AB,
∴∠DCB=120°,
∵∠HCD=∠GCB,
∴∠HCG=∠HCB+∠GCB=∠HCB+∠DCH=∠DCB=120°,
∵CH=CG,
∴∠CGP=∠CHP=30°,
即在Rt△CPG中,tan30°=
CP
GP

∴PG=
3
PC.

(3)解:PG与PC的位置关系是PG⊥CP,数量关系是GP=
CP
tan
1
2
α

理由是:延长GP交AD于点H,连接CH,CG,
∵P是线段DF的中点,
∴FP=DP,
∵AD∥FG,
∴∠GFP=∠HDP,
在△GFP和△HDP中
∠GFP=∠HDP
PF=DP
∠GPF=∠DPH

∴△GFP≌△HDP(ASA),
∴GP=HP,GF=HD,
∵四边形ABCD是菱形,
∴CD=CB,∠HDC=∠ABC=60°.
由∠ABC=∠BEF=60°,且菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,
∴∠GBC=60°.
∴∠HDC=∠GBC.
∵四边形BEFG是菱形,
∴GF=GB=DH,
在△HDC和△GBC中
DC=BC
∠HDC=∠CBG
BG=DH

∴△HDC≌△GBC(SAS).
∴∠DCH=∠GCB,CH=CG,
∵PH=PG,
∴PG⊥PC,
∵菱形ABCD,∠ABC=α,
∴CD∥AB,
∴∠DCB=180°-α,
∵∠HCD=∠GCB,
∴∠HCG=∠HCB+∠GCB=∠HCB+∠DCH=∠DCB=180°-α,
∵CH=CG,
∴∠CGP=∠CHP=
1
2
[180°-(180°-α)]=
1
2
α,
即在Rt△CPG中,tan
1
2
α=
CP
GP

∴PG=
CP
tan
1
2
α
点评:本题考查了全等三角形的性质和判定,菱形的性质,解直角三角形,等腰三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力,证明过程类似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

请阅读下列材料:
问题:如图1,在菱形ABCD和菱形BEFG中,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,探究PG与PC的位置关系及
PG
PC
的值.
小聪同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及
PG
PC
的值;
(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题中的其他条件不变(如图2).你在(1)中得到的两个结论是否发生变化?写出你的猜想并加以证明;
(3)若图1中∠ABC=∠BEF=2α(0°<α<90°),将菱形BEFG绕点B顺时针旋转任意角度,精英家教网原问题中的其他条件不变,请你直接写出
PG
PC
的值(用含α的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在Rt△ABC中,∠A=90°,AB=AC,BC=4
2
,另有一等腰梯形DEFG(GF∥DE)的底边DE与BC重合,两腰分别落在AB,AC上,且G,F分别是AB,AC的中点.
精英家教网
(1)求等腰梯形DEFG的面积;
(2)操作:固定△ABC,将等腰梯形DEFG以每秒1个单位的速度沿BC方向向右运动,直到点D与点C重合时停止.设运动时间为x秒,运动后的等腰梯形为DEF′G′(如图2).
探究1:在运动过程中,四边形BDG′G能否是菱形?若能,请求出此时x的值;若不能,请说明理由;
探究2:设在运动过程中△ABC与等腰梯形DEFG重叠部分的面积为y,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图1,A,E,B,D在同一直线上,在△ABC与△DEF中,AB=DE,AC=DF,AC∥DF.求证:∠C=∠F.
(2)如图2,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.求线段BE的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•福州)如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB=
8-2t
8-2t
,PD=
4
3
t
4
3
t

(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图2,在整个运动过程中,求出线段PQ中点M所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

(2012•新乡模拟)阅读下列材料:问题:如图1,在菱形ABCD和菱形BEFG中,∠ABC=∠BEF=60°,点A,B,E在同一条直线上,P是线段DF的中点,连接PG,PC,探究PG与PC的位置关系
小颖同学的思路是:延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.
请你参考小颖同学的思路,探究并解决下列问题:
(1)请你写出上面问题中线段PG与PC的位置关系;
(2)将图1中的菱形BEFG绕点B顺时针旋转,使菱形BEFG的对角线BF恰好与菱形ABCD的边AB在同一条直线上,原问题申的其他条件不变(如图2).你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明,

查看答案和解析>>

同步练习册答案