【题目】如图, 在Rt△ABC中,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为_________
【答案】
【解析】
首先根据折叠可得CD=AC=6,B′C=BC=8,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,然后求得△ECF是等腰直角三角形,进而求得∠B′FD=90°,CE=EF=4.8,由勾股定理求出AE,得出BF的长,即 B′F的长.
解:根据折叠的性质可知:DE=AE,∠ACE=∠DCE,∠BCF=∠B′CF,CE⊥AB,B′F=BF,
∴B′D=8-6=2,∠DCE+∠B′CF=∠ACE+∠BCF,
∵∠ACB=90°,
∴∠ECF=45°,
∴△ECF是等腰直角三角形,
∴EF=CE,∠EFC=45°,
∴∠BFC=∠B′FC=135°,
∴∠B′FE=90°,
∵S△ABC=ACBC=ABCE,
∴ACBC=ABCE,
∵根据勾股定理得:
∴
∴EF=4.8,
∴B′F=BF=AB-AE-EF=10-3.6-4.8=1.6=,
故答案是:.
科目:初中数学 来源: 题型:
【题目】如图,AD∥EC.
(1)若∠C=40°,AB平分∠DAC,求∠DAB的度数.
(2)若AE平分∠DAB,BF平分∠ABC,试说明AE∥BF的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.
(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理;
(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,求△ACE为等腰三角形时CE:CD的值;
(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.
图1 图2 图3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AO⊥OM,OA=8,点B为射线OM上的一个动点,分别以OB,AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】作图题:如图所示是每一个小方格都是边长为1的正方形网格,
(1)利用网格线作图:
①在上找一点P,使点P到和的距离相等;
②在射线上找一点Q,使.
(2)在(1)中连接与,试说明是直角三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点(端点除外),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,
(1)求证:△ABQ ≌ △CAP;
(2)∠CMQ的大小变化吗?若变化,则说明理由,若不变,则求出它的度数;
(3)连接PQ,当点P,Q运动多少秒时,△PBQ是直角三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,D、E分别是斜边AB、直角边BC上的点,把沿着直线DE折叠.
如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE;不写作法和证明,保留作图痕迹
如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD平分∠BAC,DG⊥BC且平分BC交BC于点G,DE⊥AB于点E,DF⊥AC的延长线于点F.
(1)说明BE=CF的理由。
(2)如果AB=m,AC=n,求AE,BE的长。(用m、n表示结果)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com