【题目】小强遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°, AD=2,BD=2DC,求AC的长.
小强发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).
(1)请回答:∠ACE的度数为 ,AC的长为 .
参考小强思考问题的方法,解决问题:
(2)如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.
【答案】(1)75°,AC的长为3;(2).
【解析】
试题分析:(1)过点C作CE∥AB,交AD的延长线于点E,可知∠E=∠BAD=75°,因为∠CAD=30°,所以利用三角形内角和可算出∠ACE的度数是75度,再利用平行线分线段成比例定理得出DE=1,AE=2+1=3,所以AC=AE=3;(2)先建立平行线,过点D作DF⊥AC于点F.得到AB∥DF,由平行线分线段成比例定理得到,由AE=2,得EF=1,AF=3,在Rt△AFD中,由∠FAD=30°,可算出DF和AD的长度,又因为AD=AC,于是可知道AB和AC的长度,再由勾股定理算出BC的长度即可.
试题解析:(1)过点C作CE∥AB,交AD的延长线于点E,由两直线平行内错角相等可知∠E=∠BAD=75°,因为∠CAD=30°,所以利用三角形内角和可算出∠ACE=180-75-30=75,再利用平行线分线段成比例定理得出CD:BD=ED:AD,因为AD=2,BD=2DC,所以DE=1,于是AE=2+1=3,因为AC=AE,所以AC的长为3;(2)过点D作DF⊥AC于点F.
∵∠BAC=90°=∠DFA,∴AB∥DF,∴△ABE∽△FDE,∴,∵AE=2,∴EF=1,AF=2+1=3,AB=2DF.在△ACD中,∵∠CAD=30°,∠ADC=75°,∴∠ACD=75°,∴∠ADC=∠ACD,∴AC=AD.∵DF⊥AC,∴∠AFD=90°,在Rt△AFD中,∠FAD=30°,∴设DF=x, 则AD=2x,∴,解得:(舍去),∴DF=,AB=AC=AD=,∴BC==.
科目:初中数学 来源: 题型:
【题目】对于一次函数y=x+6,下列结论错误的是( )
A.函数值随自变量增大而增大
B.函数图象与两坐标轴围成的三角形面积为18
C.函数图象不经过第四象限
D.函数图象与x轴交点坐标是(0,﹣6)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为_____分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】具有下列条件的两个等腰三角形,不能判断它们全等的是( )
A.顶角、一腰对应相等
B.底边、一腰对应相等
C.两腰对应相等
D.一底角、底边对应相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2019年6月,华为第二颗自研7纳米麒麟系列芯片810出炉,7纳米换算为米等于_____米(用科学记数法表示)单位换算方法:1毫米=1000微米,1微米=1000纳米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场今年二月份的营业额为400万元,三月份由于经营不善,其营业额比二月份下降10%.后来通过加强管理,五月份的营业额达到518.4万元.求三月份到五月份营业额的月平均增长率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com