分析 连接BI,根据三角形的内切圆的意义和圆周角定理得到BD=DC,根据三角形外角性质求出∠IBD=∠BID,根据等腰三角形的判定求出BD=ID即可.
解答
证明:连接BI,
∵I是△ABC的内心,
∴∠BAD=∠DAC,∠ABI=∠CBI,
∴$\widehat{BD}$=$\widehat{CD}$,
∴BD=DC,
∵∠BID=∠ABI+∠BAD,∠IBD=∠CBI+∠DBC,
∵∠CAD=∠BAD=∠DBC,
∴∠DBI=∠BID,
∴BD=DI,
∴BD=CD=ID,
∴以D为圆心,DI为半径画弧,必经过点B与点C.
点评 本题主要考查对等腰三角形的性质和判定,三角形的内切圆与内心,三角形的外角性质,圆周角定理,圆心角、弧、弦之间关系等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{9}{8}$cm | B. | $\frac{3}{2}$cm | C. | 2cm | D. | 3cm |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com