分析 (1)连接BI,CI,CD,求证△BCD为等腰三角形,再利用BI为∠ABC平分线,求证△DBI为等腰三角形,利用等量代换即可证明;
(2)证△DBE∽△DAB,得DB2=DE•DA,再由(2)得DI2=DE•DA.
解答 (1)证明:连接BI,CI,CD,![]()
∵I为内心,
∴AI为∠BAC角平分线,
BI为∠ABC平分线,
∴∠ABI=∠CBI,∠BAD=∠DAC,
∵∠BID=∠ABI+∠BAI,
∠CBD=∠DAC=∠BAI,
∴∠BID=∠CBI+∠CBD=∠DBI,
∴△DBI为等腰三角形,
∴DB=DI;
(2)证明:∵∠DBE=∠CAD,∠BAE=∠CAE,
∴∠BAE=∠EBD,
∴△DBE∽△DAB,
∴$\frac{DB}{DA}$=$\frac{DE}{DB}$,
∴DB2=DE•DA,
又∵DB=DI(已证),
∴DI2=DE•DA.
点评 本题考查了三角形的相似和性质以及三角形的内切圆与内心,证明此题的关键是连接BI,CI,CD,求证△BCD为等腰三角形,再利用BI为∠ABC平分线,求证△DBI为等腰三角形.此题难度较大,属于难题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com