精英家教网 > 初中数学 > 题目详情

【题目】我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.你可以利用这一结论解决问题:
如图,点P在以MN(南北方向)为直径的⊙O上,MN=8,PQ⊥MN交⊙O于点Q,垂足为H,PQ≠MN,弦PC、PD分别交MN于点E、F,且PE=PF.

(1)比较 的大小;
(2)若OH=2 ,求证:OP∥CD;
(3)设直线MN、CD相交所成的锐角为α,试确定cosα= 时,点P的位置.

【答案】
(1)解:∵PE=PF,PH⊥EF,

∴PH平分∠FPE,

∴∠DPQ=∠CPQ,

=


(2)证明:连结CD、OP、OQ,OQ交CD于B,如图,

∵OH=2 ,OP=4,

∴PH= =2

∴△OPH为等腰直角三角形,

∴∠OPQ=45°,

而OP=OQ,

∴△OPQ为等腰直角三角形,

∴∠POQ=90°,

∴OP⊥OQ,

=

∴OQ⊥CD,

∴OP∥CD


(3)解:直线CD交MN于A,如图,

∵cosα=

∴∠α=30°,即直线MN、CD相交所成的锐角为30°,

而OB⊥CD,

∴∠AOB=60°,

∵OH⊥PQ,

∴∠POH=60°,

在Rt△POH中,∵sin∠POH=

∴PH=4sin60°=2

即点P到MN的距离为2


【解析】(1)根据等腰三角形的性质,由PE=PF,PH⊥EF可判断PH平分∠FPE,然后根据圆中角定理得到 = ;(2)连结CD、OP、OQ,OQ交CD于B,如图,先计算出PH=2 ,则可判断△OPH为等腰直角三角形得到∠OPQ=45°,再判断△OPQ为等腰直角三角形得到∠POQ=90°,然后根据垂径的推理由 = 得到OQ⊥CD,则根据平行线的判定方法得OP∥CD;(3)直线CD交MN于A,如图,由特殊角的三角函数值得∠α=30°,即直线MN、CD相交所成的锐角为30°,利用OB⊥CD得到∠AOB=60°,则∠POH=60°,然后在Rt△POH中利用正弦的定义计算出PH即可.本题考查了圆的综合题:熟练掌握垂径定理及其推理、圆周角定理;能够灵活应用等腰直角三角形的性质和三角函数进行几何计算.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解答
(1)阅读理解:

如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.
中线AD的取值范围是
(2)问题解决:
如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;
(3)问题拓展:
如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A的直线y=﹣x+4交抛物线于点C.

(1)求此抛物线的解析式;
(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;
(3)当动点E在直线AC与抛物线围成的封闭线A→C→B→D→A上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列命题正确的是(   )

A. 任意两个矩形一定相似 B. 相似图形就是位似图形

C. 如果点是线段的黄金分割点,那么 D. 有一个锐角相等的两个直角三角形相似

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一淘宝店主购进两款恤在网上进行销售,恤每件价格元,恤每件价格元,第一批共购买件.

(1)该淘宝店主第一批购进的恤的总费用不超过元,求恤最少购买多少件?

(2)由于销售情况良好,该淘宝店主打算购进第二批恤,购进的两款恤件数之比为,价格保持第一批的价格不变;第三批购进恤的价格在第一批购买的价格上每件减少了元,恤的价格比第一批购进的价格上每件增加了元,恤的数量比第二批增加了恤的数量比第二批减少了,第二批与第三批购进的恤的总费用相同,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,BECD,BE=DE,BC=DA.

求证:(1)BEC≌△DAE;

(2)DFBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:|﹣|﹣(﹣π)0﹣sin30°+(﹣﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习成为现代人的时尚,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.
(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%;
(2)将条形统计图补充完整;
(3)若5月份到图书馆的读者共28000人次,估计其中约有多少人次读者是职工?

查看答案和解析>>

同步练习册答案