精英家教网 > 初中数学 > 题目详情
如图,△ABC为等边三角形,P为BC上一点,△APQ为等边三角形.有下列结论:
①AB∥CQ;②AQ与CQ互相垂直;③△APC∽△QCP;④△ABP≌△ACQ.
其中正确的有
 
考点:相似三角形的判定与性质,全等三角形的判定与性质,等边三角形的性质
专题:
分析:根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可,再根据等腰三角形性质求出∠BAP=30°,求出∠BAQ=90°,根据平行线性质得出∠AQC=90°,即可得出答案.
解答:证明:∵△ABC和△APQ是等边三角形,
∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,
∴∠BAP=∠CAQ=60°-∠PAC,
在△ABP和△ACQ中,
AB=AC
∠BAP=∠CAQ
AP=AQ

∴△ABP≌△ACQ(SAS),故④正确,
∴∠ACQ=∠B=60°=∠BAC,
∴AB∥CQ,故①正确,
人哟AQ与CQ能互相垂直,此时点P在BC的中点,
理由如下:
∵当P为BC边中点时,∠BAP=
1
2
∠BAC=30°,
∴∠BAQ=∠BAP+∠PAQ=30°+60°=90°,
又∵AB∥CQ,
∴∠AQC=90°,
即AQ⊥CQ,而此题没说明P为BC中点,故②不正确,
△APC和△QCP中只有一对对顶角相等,所以不可能判定这两个三角形相似,故③错误,
故答案为:①④
点评:本题考查了等边三角形性质,全等三角形的性质和判定,平行线性质和判定,等腰三角形性质的应用,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:AB为⊙O的直径,C为⊙O上一点,CD是⊙O的切线,AD⊥CD于D.
(1)求证:AC是∠DAB的平分线;
(2)若AC=5,AD=4,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

数据a,4,2,5,3的平均数为b,且a和b是方程x2-4x+3=0的两个根,则这组数据的标准差是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,∠MON=20°,A为射线OM上一点,OA=4,D为射线ON上一点,OD=8,C为射线AM上任意一点,B是线段OD上任意一点,那么折线ABCD的长AB+BC+CD的最小值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠A=90°,∠B=30°,BC=10,以A为圆心画圆,如果⊙A与直线BC相切,那么⊙A的半径长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

下列计算正确的是(  )
A、(a23=a5
B、a6÷a3=a2
C、a2•a=a3
D、(a-b)2=a2-b2

查看答案和解析>>

科目:初中数学 来源: 题型:

下列运算中,正确的是(  )
A、x2+x2=x4
B、x6÷x2=x3
C、x2•x4=x6
D、(3x22=6x4

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方程叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2
例如:二次三项式x2-2x+4运用配方法进行变形,可得:
x2-2x+4=x2-2x
+1+3
.
=x2-2•x•
1
.
+
12
.
+3=(x-1)2+3
x2-2x+4=x2
-4x
.
+4
+2x
.
=x2-
2•x•2
.
+22+2x=(x-2)2+2x
x2-2x+4=
1
4
x2
.
-2x+4
+
3
4
x2
.
=(
1
2
x
.
)2-2•
1
2
x
.
•2+22+
3
4
x2=(
1
2
x-2)2+
3
4
x2

因此(x-1)2
+3
.
(x-2)2
+2x
.
(
1
2
x-2)2
+
3
4
x2
.
是x2-2x+4的三种不同形式的配方式(即“余项”分别是常数项、一次项、二次项--见横线上的部分).
(1)比照上面的示例,写出x2+12x+16的三种不同形式的配方式;
(2)将a2+4ab+b2配方(至少两种形式);
(3)运用配方法解决问题:已知a2-4ab+5b2+c2-6b-2c+10=0,求a+b+c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

龙岩市某中学2013届九年级(1)班学生为四川雅安灾区人民开展募捐活动,募捐活动共收得募捐款2200元.班委会决定拿出不少于850元但不超过900元的募捐款直接汇给灾区红十字会,其余募捐款直接用于为灾区某校九年级(1)班50名同学每人购买一个文具盒或一个书包,并邮寄给他们,假定邮费共计30元;已知每个书包的单价比每个文具盒多12元,用176元恰好可以买到4个文具盒和3个书包.
(1)求每个文具盒和每个书包的价格分别为多少元;
(2)有几种购买文具盒和书包的方案?

查看答案和解析>>

同步练习册答案