精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,Rt△ABC的直角边AB在x轴上,∠ABC=90°.点A的坐标为(1,0),点C的坐标为(3,4),M是BC边的中点,函数)的图象经过点M.

(1)求k的值;

(2)将△ABC绕某个点旋转180°后得到△DEF(点A,B,C的对应点分别为点D,E,F),且EF在y轴上,点D在函数)的图象上,求直线DF的表达式.

【答案】(1)6;(2)y=2x-1.

【解析】

(1)根据直角三角形的性质和坐标与图形的特点求得点的坐标,将其代入反比例函数解析式求得的值;

(2)根据旋转的性质推知:,故其对应边、角相等:,由函数图象上点的坐标特征得到:.结合得到,利用待定系数法求得结果.

(1)∵Rt△ABC的直角边AB在x轴上,∠ABC=90°,点C的坐标为(3,4),

∴点B的坐标为(3,0),CB=4.

∵M是BC边的中点,

∴点M的坐标为(3,2).

∴k=3×2=6.

(2)∵△ABC绕某个点旋转180°后得到△DEF,

∴△DEF≌△ABC.

∴DE=AB,EF=BC,∠DEF=∠ABC=90°.

∵点A的坐标为(1,0),点B的坐标为(3,0),

∴AB=2.

∴DE=2.

∵EF在y轴上,

∴点D的横坐标为2.

当x=2时,y=3.

∴点D的坐标为(2,3).

∴点E的坐标为(0,3).

∵EF=BC=4,

∴点F的坐标为(0,-1).

设直线DF的表达式为y=ax+b,将点D,F的坐标代入,

∴直线DF的表达式为y=2x-1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF= ,BD=2,则菱形ABCD的面积为( )
A.2
B.
C.6
D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1 , 如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn1 , 使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点Bn的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.

(1)求证:四边形AECF是菱形;

(2)若AC=4,BE=1,直接写出菱形AECF的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小梅在浏览某电影评价网站时,搜索了最近关注到的甲、乙、丙三部电影,网站通过对观众的抽样调查,得到这三部电影的评分数据统计图分别如下:

甲、乙、丙三部电影评分情况统计图

根据以上材料回答下列问题:

(1)小梅根据所学的统计知识,对以上统计图中的数据进行了分析,并通过计算得到这三部电影抽样调查的样本容量,观众评分的平均数、众数、中位数,请你将下表补充完整:

甲、乙、丙三部电影评分情况统计表

电影

样本容量

平均数

众数

中位数

100

3.45

5

3.66

5

100

3

3.5

(2)根据统计图和统计表中的数据,可以推断其中_______电影相对比较受欢迎,理由是

_______________________________________________________________________.(至少从两个不同的角度说明你推断的合理性)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下列材料,并完成相应的任务。
阿基米德(Archimedes,公元前287~公元前212年,古希腊)是有史以来最伟大的数学家之一.

阿基米德折弦定理:如图1,AB和BC是圆O的两条弦(即折线ABC是圆的一条折弦), BC>AB,M是 的中点,即CD=AB+BD。下面是运用“截长法”证明CD=AB+BD的部分过程。
证明:如图2,在CB上截取CG=AB,连接MA、MB、MC、MG。因为M是弧ABC的中点,所以MA=MC.
任务:
(1)请按照上面的证明思路,完整证明阿基米德折弦定理,即CD=AB+BD。
(2)如图3,已知等边△ABC内接于圆O,AB=1,D为 上一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线 轴交于A、B两点(点A在点B的左侧),点B的坐标为(3,0),与 轴交于点C(0,-3),顶点为D。

(1)求抛物线的解析式及顶点D的坐标。
(2)联结AC,BC,求∠ACB的正切值。
(3)点P是x轴上一点,是否存在点P使得△PBD与△CAB相似,若存在,请求出点P的坐标;若不存在,请说明理由。
(4)M是抛物线上一点,点N在 轴,是否存在点N,使得以点A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.

(1)求证:△BDE≌△BCE;
(2)试判断四边形ABED的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表

分数段

频数

频率

60≤x<70

30

0.15

70≤x<80

m

0.45

80≤x<90

60

n

90≤x<100

20

0.1

请根据以上图表提供的信息,解答下列问题:

(1)这次共调查了   名学生;表中的数m=   ,n=   

(2)请补全频数直方图;

(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是   

查看答案和解析>>

同步练习册答案