精英家教网 > 初中数学 > 题目详情

【题目】已知一张三角形纸片如图甲,其中将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为如图乙再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为如图丙原三角形纸片ABC中,的大小为______

【答案】72;

【解析】

根据题意设∠Ax,再根据翻折的相关定义得到∠A的大小,随之即可解答.

∠Ax,则由翻折对应角相等可得∠EDA=∠A=x,

∠BEDAED的外角可得∠BED=EDA+∠A=2x,

则由翻折对应角相等可得∠C=∠BED=2x,

因为AB=AC,所以∠ABC=∠C=2x,

ABC中,∠ABC+∠C+∠A=2x+2x+x=180°,

所以x=36°,

则∠ABC=2x=72°.

故本题正确答案为72°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径AD长为6,AB是弦,∠A=30°,CD∥AB,且CD=
(1)求∠C的度数;
(2)求证:BC是⊙O的切线;
(3)求阴影部分面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,长方形的顶点在坐标原点,顶点分别在轴,轴的正半轴上,为边的中点,是边上的一个动点,当的周长最小时,点的坐标为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如下图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题.



(1)本次接受问卷调查的同学有多少人?补全条形统计图.
(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小龙在学校组织的社会调查活动中负责了解他所居住的小区450户居民的家庭收入情况. 他从中随机调查了40户居民家庭收入情况(收入取整数,单位:元),并绘制了如下的频数分布表和频数分布直方图.

分组

频数

百分比

600800

2

5

8001000

6

15

10001200

45

9

22.5

16001800

2

合计

40

100

根据以上提供的信息,解答下列问题:

1)补全频数分布表.

2)补全频数分布直方图.

3)绘制相应的频数分布折线图.

4)请你估计该居民小区家庭属于中等收入(大于1000不足1600元)的大约有多少户?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在每个小正方形的边长为 的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距 的另一个格点的运动称为一次跳马变换.例如,在 的正方形网格图形中(如图1),从点 经过一次跳马变换可以到达点 等处.现有 的正方形网格图形(如图2),则从该正方形的顶点 经过跳马变换到达与其相对的顶点 ,最少需要跳马变换的次数是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】周末,老师带同学去北京植物园中的一二﹒九运动纪念广场,这里有三座侧面为三角形的纪念亭,挺拔的建筑线条象征青年朝气蓬勃、积极向上的精神.基于纪念亭的几何特征,同学们编拟了如下的数学问题:

如图1,点A,B,C,D在同一条直线上,在四个论断“EA=ED,EFAD,AB=DC,FB=FC”中选择三个作为已知条件,另一个作为结论,构成真命题(补充已知和求证),并进行证明.

已知:如图,点A,B,C,D在同一条直线上,   

求证:   

证明:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:两位同学在用标有数字12...99张卡片做游戏.

甲同学:你先从这9张卡片中随意抽取两张(按抽取的先后顺序分别称为卡片卡片),别告诉我卡片上是什么数字,然后你把卡片上的数字乘以5,加上7,再乘以2,再加上卡片上的数字,把最后得到的数的值告诉我,我就能猜出你抽出的是哪两张卡片啦!

乙同学:这么神奇?我不信.”

……

试验一下:

1)如果乙同学抽出的卡片上的数字为2,卡片上的数字为5,他最后得到的数等于多少;

2)若乙同学最后得到的数,则卡片上的数字为多少,卡片上的数字为多少.

解密:

请你说明:对任意告知的数,甲同学是如何猜到卡片的.

解:(1等于多少.

2)若,则卡片上的数字为多少,卡片上的数字为多少.

解密:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课题学习:设计概率模拟实验. 在学习概率时,老师说:“掷一枚质地均匀的硬币,大量重复实验后,正面朝上的概率约是 .”小海、小东、小英分别设计了下列三个模拟实验:
小海找来一个啤酒瓶盖(如图1)进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;
小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上1至8个数字(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;
小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述实验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.

根据以上材料回答问题:
小海、小东、小英三人中,哪一位同学的实验设计比较合理,并简要说出其他两位同学实验的不足之处.

查看答案和解析>>

同步练习册答案