【题目】如图,在平面直角坐标系中,长方形的顶点在坐标原点,顶点分别在轴,轴的正半轴上,,为边的中点,是边上的一个动点,当的周长最小时,点的坐标为_________.
科目:初中数学 来源: 题型:
【题目】如图,在等腰中,,,.
(1)如果点在底边上且以的速度由点向点运动,同时点在腰上由向点运动.
①如果点与点的运动速度相等,求经过多少秒后;
②如果点与点的运动速度不相等,当点的运动速度为多少时,能够使与全等?
(2)若点以②中的运动速度从点出发,点以速度从点同时出发,都逆时针沿三边运动,直接写出当点与点第一次相遇时的运动的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠DAB的角平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=200°,则∠P=( )
A. 10 ° B .20 ° C .30° D.40°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y= (k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2 ,点A的纵坐标为4.
(1)求该反比例函数和一次函数的解析式;
(2)连接MC,求四边形MBOC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y= x2﹣ x﹣ 与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.
(1)求直线AE的解析式;
(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值;
(3)点G是线段CE的中点,将抛物线y= x2﹣ x﹣ 沿x轴正方向平移得到新抛物线y′,y′经过点D,y′的顶点为点F.在新抛物线y′的对称轴上,是否存在一点Q,使得△FGQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数与两坐标分别交于两点,动点从原点出发,以每秒2个单位长度的速度沿轴正方向运动,连接.设运动时间为 s.
(1)当为何值时,的面积为6?
(2)若,作中边上的高,当为何值时,长为4?并直接写出此时点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,图象(折线OEFPMN)描述了某汽车在高速公路上行驶过程中速度与时间的函数关系,下列说法中,错误的是( )
A. 第5 min时汽车的速度是80 km/h
B. 从第3 min到第6 min,汽车行驶了4 km
C. 第 6 min到9 min,汽车行驶了6 km
D. 从第9 min到第12 min,汽车一直在减速直到速度减为0 km/h
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一张三角形纸片如图甲,其中将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为如图乙再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为如图丙原三角形纸片ABC中,的大小为______
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知□ABCD,AB//x轴,AB=6,点A的坐标为(1,-4),点D的坐标为(-3,4),点B在第四象限,点P是□ABCD边上的一个动点.
(1)若点P在边BC上,PD=CD,求点P的坐标.
(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x-1上,求点P的坐标.
(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com