精英家教网 > 初中数学 > 题目详情

【题目】有理数a,b,c在数轴上的位置如图所示,且|a|=|c|.

(1)若|a+c|+|b|=2,求b的值;

(2)用“>”从大到小把a,b,﹣b,c连接起来.

【答案】(1)-2;(2)见解析.

【解析】试题分析:(1)由a、c之间的位置关系结合|a|=|c|可得出a+c=0,由b在数轴上的位置结合|a+c|+|b|=2可得出b的值;

(2)将﹣b标记在数轴上,结合数轴即可得出a>﹣b>b>c.

试题解析:解:(1)∵|a|=|c|,且a,c分别在原点的两旁,

∴a,c互为相反数,即a+c=0.

∵|a+c|+|b|=2,

∴|b|=2,

∴b=±2.

∵b在原点左侧,

∴b=﹣2.

(2)将﹣b标记在数轴上,如图所示.

∴a>﹣b>b>c.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】[(x﹣y)2]3(x﹣y)3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E,AE=2,CE=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.

(1)求证:DE∥BF;
(2)若∠G=90°,求证:四边形DEBF是菱形;
(3)请利用备用图分析,在(2)的条件下,若BE=4,∠DEB=120°,点M为BF的中点,当点P在BD边上运动时,求PF+PM的最小值,并求出此时线段BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有(  )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且BC两地相距120海里.

1)求出此时点A到岛礁C的距离;

2)若中海监50”A处沿AC方向向岛礁C驶去,当到达点A′时,测得点BA′的南偏东75°的方向上,求此时中国海监50”的航行距离.(注:结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校有500名学生参加毕业会考,其数学成绩在90~100分之间的共有180人,则这个分数段的频率为( )

A. 0.06 B. 0.12 C. 0.18 D. 0.36

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.

(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?

(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?

查看答案和解析>>

同步练习册答案