精英家教网 > 初中数学 > 题目详情
20、如图,已知△ABC和△DEF,∠A=∠D=90°,且△ABC与△DEF不相似,问是否存在某种直线分割,使△ABC所分割成的两个三角形与△DEF所分割成的两个三角形分别对应相似?
(1)如果存在,请你设计出分割方案,并给出证明;如果不存在,请简要说明理由;
(2)这样的分割是唯一的吗?若还有,请再设计出一种.
分析:(1)作∠BCH=∠E,∠EFG=∠B,根据两组角对应相等两三角形相似可以得到分成的一对三角形相似,又∠AHC=∠B+∠BCH,∠DGF=∠E+∠EFG,所以∠AHC=∠DGF,又∠A=∠D,所以△ACH∽△DFG.
(2)不唯一,作∠CBM=∠F,∠FEN=∠C即可.
解答:解:(1)能.(2分)
由题意,∠B+∠ACB=∠E+∠DFE,∠B≠∠E、∠B≠∠DFE,(4分)
设∠B<∠DFE,
作∠EFG=∠B,G在DE上,(5分)
作∠BCH=∠E,H在AB上(如图),(6分)
可得,△HBC∽△GFE;
∵∠AHC=∠B+∠BCH,∠DGF=∠E+∠EFG,
∴∠AHC=∠DGF,
又∠A=∠D,
∴△AHC∽△DGF.(8分)
(2)不唯一,作∠CBM=∠F,∠FEN=∠C即可.
此时△BCM∽△FEN,△ABM∽△DEN.
点评:本题关键在于先分割出两组角对应相等,得到一对相似三角形,再根据三角形的外角性质得到一对相等的角,从而证明另一对三角形也相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知△ABC和△DEF是两个边长都为10cm的等边三角形,且B、D、C、E都在同一直线上精英家教网,连接AD、CF.
(1)求证:四边形ADFC是平行四边形;
(2)若BD=3cm,△ABC沿着BE的方向以每秒1cm的速度运动,设△ABC运动时间为t秒,
①当t为何值时,?ADFC是菱形?请说明你的理由;
②?ADFC有可能是矩形吗?若可能,求出t的值及此矩形的面积;若不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,已知△ABC和△A″B″C″及点O.
(1)画出△ABC关于点O对称的△A′B′C′;
(2)若△A″B″C″与△A′B′C′关于点O′对称,请确定点O′的位置;

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图,已知△ABC和两条相交于O点且夹角为60°的直线m、n.
(1)画出△ABC关于直线m的对称△A1B1C 1,再画出△A1B1C 1关于直线n的对称△A2B2C 2
(2)你认为△A2B2C 2可视为△ABC绕着哪一点旋转多少度得到的?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南岗区二模)如图,已知△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,求证:AD=CE.

查看答案和解析>>

同步练习册答案