精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙P与y轴相切于坐标原点O(0,0),与x轴相交于点A(5,0),过点A的直线AB与y轴的正半轴交于点B,与⊙P交于点C.
(1)已知AC=3,求点B的坐标;
(2)若AC=a,D是OB的中点.问:点O、P、C、D四点是否在同一圆上?请说明理由.如果这四点在同一圆上,记这个圆的圆心为O1 , 函数 的图象经过点O1 , 求k的值(用含a的代数式表示).

【答案】
(1)解:解法一:连接OC,

∵OA是⊙P的直径,

∴OC⊥AB,

在Rt△AOC中,

在Rt△AOC和Rt△ABO中,

∵∠CAO=∠OAB

∴Rt△AOC∽Rt△ABO,

,即

解法二:连接OC,因为OA是⊙P的直径,

∴∠ACO=90°

在Rt△AOC中,AO=5,AC=3,

∴OC=4,

过C作CE⊥OA于点E,则:

即:

设经过A、C两点的直线解析式为:y=kx+b.

把点A(5,0)、 代入上式得:

解得:

∴点


(2)解:点O、P、C、D四点在同一个圆上,理由如下:

连接CP、CD、DP,

∵OC⊥AB,D为OB上的中点,

∴∠3=∠4,

又∵OP=CP,

∴∠1=∠2,

∴∠1+∠3=∠2+∠4=90°,

∴PC⊥CD,又∵DO⊥OP,

∴Rt△PDO和Rt△PDC是同以PD为斜边的直角三角形,

∴PD上的中点到点O、P、C、D四点的距离相等,

∴点O、P、C、D在以DP为直径的同一个圆上;

由上可知,经过点O、P、C、D的圆心O1是DP的中点,圆心

由(1)知:Rt△AOC∽Rt△ABO,

求得:AB= ,在Rt△ABO中,

OD=

,点O1在函数 的图象上,


【解析】(1)此题有两种解法: 解法一:连接OC,根据OA是⊙P的直径,可得OC⊥AB,利用勾股定理求得OC,再求证Rt△AOC∽Rt△ABO,利用其对应变成比例求得OB即可;
解法二:连接OC,根据OA是⊙P的直径,可得∠ACO=90°,利用勾股定理求得OC,过C作CE⊥OA于点E,分别求得CE、0E,设经过A、C两点的直线解析式为:y=kx+b.把点A(5,0)、 代入上式解得即可.(2)连接CP、CD、DP,根据OC⊥AB,D为OB上的中点,可得 ,求证Rt△PDO和Rt△PDC是同以PD为斜边的直角三角形,可得PD上的中点到点O、P、C、D四点的距离相等,由上可知,经过点O、P、C、D的圆心O1是DP的中点,圆心 ,由(1)知:Rt△AOC∽Rt△ABO,可得 ,求得:AB、OD即可.
【考点精析】掌握直角三角形斜边上的中线和勾股定理的概念是解答本题的根本,需要知道直角三角形斜边上的中线等于斜边的一半;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有(

A.2个
B.3个
C.4个
D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).

(1)求直线AB的解析式;
(2)若直线AB上的点C在第一象限,且SBOC=2,求点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)这次活动一共调查了名学生;
(2)在扇形统计图中,“其他”所在扇形圆心角等于度;
(3)补全条形统计图;
(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知:45°<∠A<90°,则下列各式成立的是(
A.sinA=cosA
B.sinA>cosA
C.sinA>tanA
D.sinA<cosA

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在双曲线y= 的第一象限的那一支上,AB⊥y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为 ,则k的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,二次函数y=﹣ +bx+c的图象经过点A(1,0),且当x=0和x=5时所对应的函数值相等.一次函数y=﹣x+3与二次函数y=﹣ +bx+c的图象分别交于B,C两点,点B在第一象限.
(1)求二次函数y=﹣ +bx+c的表达式;
(2)连接AB,求AB的长;
(3)连接AC,M是线段AC的中点,将点B绕点M旋转180°得到点N,连接AN,CN,判断四边形ABCN的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=2cm,点P在边AC上,从点A向点C移动,点Q在边CB上,从点C向点B移动.若点P,Q均以1cm/s的速度同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,则线段PQ的最小值是(
A.20cm
B.18cm
C.2 cm
D.3 cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点M是第一象限内一点,过M的直线分别交x轴,y轴的正半轴于A,B两点,且M是AB的中点.以OM为直径的⊙P分别交x轴,y轴于C,D两点,交直线AB于点E(位于点M右下方),连结DE交OM于点K.
(1)若点M的坐标为(3,4), ①求A,B两点的坐标;
②求ME的长.
(2)若 =3,求∠OBA的度数.
(3)设tan∠OBA=x(0<x<1), =y,直接写出y关于x的函数解析式.

查看答案和解析>>

同步练习册答案