精英家教网 > 初中数学 > 题目详情

【题目】问题背景:在△ABC中,AB、BC、AC三边的长分别为,求此三角形的面积.小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.

(1)请你将△ABC的面积直接填写在横线上:   

思维拓展:

(2)我们把上述求△ABC面积的方法叫做构图法.如果△ABC三边的长分别a、a、a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.

【答案】(1)3.5;(2)见解析;(3)3a2

【解析】

(1)利用ABC所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解;

(2)分别找到A、B、C关于直线EF的对称点MNG,顺次连接各点即可;

(3)先作出以a、2a为直角边的三角形的斜边,再根据勾股定理和网格结构作出a、a的长度,然后顺次连接即可;再根据三角形所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.

(1)ABC的面积=3×3-×1×2×1×3×2×3=9-1--3=9-5.5=3.5;

故答案为:3.5;

(2)MNG如图所示:

(3)ABC如图所示,

ABC的面积=2a·4a-×2a·a-×2a·2a-×4a·a=8a2-a2-2a2-2a2=3a2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是长方形,点A、C、D的坐标分别为A(9,0)、C(0,4),D(5,0),点P从点O出发,以每秒1个单位长度的速度沿O C B A运动,点P的运动时间为t.

(1)t=2时,求直线PD的解析式。

(2)PBC上,OP+PD有最小值时,求点P的坐标。

(3)当t为何值时,△ODP是腰长为5的等腰三角形?(直接写出t的值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图)已知测量仪器CD的高度为1米,则桥塔AB的高度约为(  )(参考数据:sin41.5°≈0.663,cos41.5°≈0.749,tan41.5°≈0.885)

A.34米
B.38米
C.45米
D.50米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,ECD的中点,连接AE、BE,BEAE,延长AEBC的延长线于点F.

求证:(1)FC=AD;

(2)AB=BC+AD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在下列条件:①∠A+∠B=∠C,②∠A∶∠B∶∠C=3∶4∶5,③∠C=∠A-∠B, ④a∶b∶c=3∶4∶5 中,能确定△ABC是直角三角形的条件有( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是(  )
A.8
B.10
C.12
D.14

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四边形ABCDADBCABBCAD=1,AB=2,BC=3,PAB边上的一动点,以PDPC为边作平行四边形PCQD , 则对角线PQ的长的最小值是(  )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标中,已知点O(0,0),A(0,2),B(1,0),点P是反比例函数y=-
图象上的一个动点,过点PPQx轴,垂足为Q . 若以点OPQ为顶点的三角形与OAB相似,则相应的点P共有(  ).
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣4,3)、B(﹣3,1)、C(﹣1,3).

(1)请按下列要求画图:
①将△ABC先向右平移4个单位长度、再向上平移2个单位长度,得到△A1B1C1 , 画出△A1B1C1
②△A2B2C2与△ABC关于原点O成中心对称,画出△A2B2C2
(2)在(1)中所得的△A1B1C1和△A2B2C2关于点M成中心对称,请直接写出对称中心M点的坐标.

查看答案和解析>>

同步练习册答案