精英家教网 > 初中数学 > 题目详情
15、如图,⊙I是△ABC的内切圆,点D、E分别为AB,AC上的点,且DE为⊙I的切线,若△ABC的周长为20,BC边的长为5.则△ADE的周长为(  )
分析:根据切线长定理可以证得:BF+CH=BG+CG=BC,DE=DR+ER=DF+EH,根据△ADE的周长=AD+AE+DE=AD+AE+DF+EH=AF+AH=△ABC的周长-(BF+CH)=△ABC的周长-BC即可求解.
解答:解:∵⊙I是△ABC的内切圆,
∴BF=BG,CG=CH,DR=DF,ER=EH
∴BF+CH=BG+CG=BC=5,
DE=DR+ER=DF+EH,
∴△ADE的周长=AD+AE+DE=AD+AE+DF+EH=AF+AH=△ABC的周长-BC-(BF+CH)=△ABC的周长-2BC=20-2×5=10.
故选C.
点评:本题考查了切线长定理,正确理解∴△ADE的周长=AD+AE+DE=AD+AE+DF+EH=AF+AH=△ABC的周长-(BF+CH)=△ABC的周长-BC是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O是△ABC的外接圆,OD⊥AB于点D、交⊙O于点E,∠C=60°,如果⊙O的半径为2,那么OD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

24、如图,AD是△ABC的高,且AD平分∠BAC,请指出∠B与∠C的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔东南州)如图,⊙O是△ABC的外接圆,圆心O在AB上,过点B作⊙O的切线交AC的延长线于点D.
(1)求证:△ABC∽△BDC.
(2)若AC=8,BC=6,求△BDC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的长.

查看答案和解析>>

同步练习册答案