精英家教网 > 初中数学 > 题目详情

如图,点B、C、E在一条直线上,△ABC、△DCE均为等边三角形,
求证:(1)BD=AE;
(2)△CFG为等边三角形.

证明:(1)∵△ABC、△DCE均为等边三角形,
∴BC=AC,CD=CE,∠BCA=∠DCE=60°,
∴∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,
∴△BCD≌△ACE(SAS),
∴BD=AE(全等三角形的对应边相等);

(2)由(1)知,△BCD≌△ACE,则∠BDC=∠AEC(全等三角形的对应角相等),即∠FDC=∠GEC;
∵△ABC、△DCE均为等边三角形,
∴∠ACB=∠DCE=60°,DC=CE,
∴∠FCG=180°-∠ACB-∠DCE=60°,
∴在△FCD和△GCE中,

∴△FCD≌△GCE(ASA),
∴FC=GC(全等三角形的对应边相等),
∴△FCG为等边三角形.
分析:(1)先证△BCD≌△ACE,可得BD=AE;
(2)由△BCD≌△ACE,可得∠BDC=∠AEC再证△FCD≌△GCE,可得FC=GC,又因为∠FCG=60°可得△FCG为等边三角形.
点评:本题考查了等边三角形的判定与性质、全等三角形的判定与性质.等边三角形的三条边都相等,三个内角都是60°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点A,O,B在同一直线上,射线OD平分∠AOC,射线OE平分∠BOC.
(1)若∠COE=60°,求∠COD及∠BOD的度数;
(2)你能发现射线OD,OE有什么位置关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点A、B、C在⊙O上,AO∥BC,∠OBC=40°,则∠ACB的度数是
20°
20°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•北京)已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.
求证:BC=ED.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山)如图,点G、E、F分别在平行四边形ABCD的边AD、DC和BC上,DG=DC,CE=CF,点P是射线GC上一点,连接FP,EP.
求证:FP=EP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•南通二模)如图,点A是双曲线y=
4
x
在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C在第二象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为
y=-
4
x
y=-
4
x

查看答案和解析>>

同步练习册答案