精英家教网 > 初中数学 > 题目详情

【题目】如图,等腰梯形ABCD放置在平面坐标系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C.

(1)求点C的坐标和反比例函数的解析式;

(2)将等腰梯形ABCD向上平移2个单位后,问点B是否落在双曲线上?

【答案】(1)y=2)恰好落在双曲线上

【解析】(1)过点C作CE⊥AB于点E,

∵四边形ABCD是等腰梯形,

∴AD=BC,DO=CE,

∴△AOD≌△BEC,∴AO=BE=2,

∵BO=6,∴DC=OE=4,

∴C(4,3);

设反比例函数的解析式y=(k≠0),

根据题意得:3=

解得k=12;

∴反比例函数的解析式y=

(2)将等腰梯形ABCD向上平移2个单位后得到梯形A′B′C′D′得点B′(6,2),

故当x=6时,y==2,即点B′恰好落在双曲线上.

(1)C点的纵坐标与D的纵坐标相同,过点C作CE⊥AB于点E,则△AOD≌△BEC,即可求得BE的长度,则OE的长度即可求得,即可求得C的横坐标,然后利用待定系数法即可求得反比例函数的解析式;

(2)将等腰梯形ABCD向上平移2个单位后,点B向上平移2个单位长度得到的点的坐标即可得到,代入函数解析式判断即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知都是实数,且,则

A. 只有最大值 B. 只有最小值

C. 既有最大值又有最小值 D. 既无最大值又无最小值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b'),给出如下定义:

b'=,则称点Q为点P的限变点.例如:点(3,﹣2)的限变点的坐标是(3,﹣2),点(﹣1,5)的限变点的坐标是(﹣1,﹣5).

(1)①点(﹣,1)的限变点的坐标是   

②在点A(﹣1,2),B(﹣2,﹣1)中有一个点是函数y=图象上某一个点的限交点,这个点是   

(2)若点P在函数y=﹣x+3的图象上,当﹣2≤x≤6时,求其限变点Q的纵坐标b'的取值范围;

(3)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b'的取值范围是b'≥mb'<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设中学生体质健康综合评定成绩为x分,满分为100分,规定:85≤x≤100A级;75≤x<85B级;60≤x<75C级;x<60D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图,请根据图中的信息,解答下列问题:

(1)在这次调查中,一共抽取了   名学生,A级人数占本次抽取人数的百分比为   %;

(2)补全条形统计图;

(3)扇形统计图中C级对应的圆心角为   度;

(4)若该校共有1000名学生,请你估计该校D级学生有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点ABC在小正方形的顶点上.

在图中画出与关于直线l成轴对称的

三角形ABC的面积为______;

AC为边作与全等的三角形,则可作出______个三角形与全等;

在直线l上找一点P,使的长最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A、B、C、D表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:

(1)本次参加抽样调查的居民有多少人?

(2)将不完整的条形图补充完整.

(3)若居民区有8000人,请估计爱吃D粽的人数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】仔细阅读下面例题,解答问题:

例题:已知关于x的多项式x2-4x+m有一个因式是(x+3),求另一个因式以及m的值.

解:设另一个因式为(x+n),得:x2-4x+m=x+3)(x+n),则x2-4x+m=x2+n+3x+3n

,解得:n =-7m =-21

∴另一个因式为(x-7),m的值为-21

问题:仿照以上方法解答下面问题:

1)已知关于x的多项式2x2+3x-k有一个因式是(x+4),求另一个因式以及k的值.

2)已知关于x的多项式2x3+5x2-x+b有一个因式为(x+2),求b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.

(1)求y关于x的函数解析式;

(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了从甲、乙两名学生中选派一名学生参加市综合知识技能竞赛,对他们进 行了 8 次综合知识技能测试,记录如下:

学生

8 次测试成绩(分)

平均数

中位数

方差

95

82

88

81

93

79

84

78

85

35.5

83

92

80

95

90

80

85

75

84

1)请你通过计算求出表格中所缺少的甲、乙两名学生这 8 次测试成绩的平均数、中位数 和方差;

2)现要从中选派一人参加市综合知识技能竞赛,你认为选派哪名同学参加合适,请说明 理由.

查看答案和解析>>

同步练习册答案