精英家教网 > 初中数学 > 题目详情
(2002•桂林)已知:如图,BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD的对角线AC、BD交于点E.
(1)求证:△ABE∽△DBC;
(2)已知BC=,CD=,求sin∠AEB的值;
(3)在(2)的条件下,求弦AB的长.

【答案】分析:(1)在△ABE与△DBC中,有∠ABE=∠DBC,∠BAE=∠BDC=90°,根据相似三角形的判定,它们相似;
(2)由△ABE∽△DBC,可知∠AEB=∠DCB,在Rt△DCB中,先由勾股定理求出BD的值,再根据正弦的定义求出sin∠DCB,得出sin∠AEB的值;
(3)求弦AB的长,sin∠AEB的值已求,求出BE的值即可,可以通过求BD、ED得出.
解答:(1)证明:∵BC为半圆的直径,
∴∠BAE=∠BDC=90°.
∵D是弧AC的中点,
∴∠ABE=∠DBC.
∴△ABE∽△DBC.

(2)解:在RT△DCB中,
∵∠BDC=90°,BC=,CD=
∴BD=
∴sin∠DCB=BD:BC=
∵△ABE∽△DBC,
∴∠AEB=∠DCB.
∴sin∠AEB=

(3)解:∵∠AEB=∠DEC,
∴sin∠DEC=
∴EC=1.25,DE=,BD=
BE=BD-DE=,AB=×sin∠AEB=1.5.
点评:本题考查了相似三角形的判断,同弧所对的圆周角相等、直径所对的圆周角为直角及解三角函数的知识,本题是一道较难的题目.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《尺规作图》(01)(解析版) 题型:解答题

(2002•桂林)已知:如图,在△ABC中,AB=AC.
(1)按照下列要求画出图形:
1)作∠BAC的平分线交BC于点D;
2)过D作DE⊥AB,垂足为点E;
3)过D作DF⊥AC,垂足为点F.
(2)根据上面所画的图形,求证:EB=FC.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《三角形》(09)(解析版) 题型:解答题

(2002•桂林)已知:如图,在△ABC中,AB=AC.
(1)按照下列要求画出图形:
1)作∠BAC的平分线交BC于点D;
2)过D作DE⊥AB,垂足为点E;
3)过D作DF⊥AC,垂足为点F.
(2)根据上面所画的图形,求证:EB=FC.

查看答案和解析>>

科目:初中数学 来源:2002年广西桂林市中考数学试卷(解析版) 题型:解答题

(2002•桂林)已知,如图,在?ABCD中,AB=8cm,BC=10cm,∠C=120°,
(1)求BC边上的高AH的长;
(2)求?ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:2002年广西桂林市中考数学试卷(解析版) 题型:选择题

(2002•桂林)已知等腰三角形的一边为3,另一边为5,则它的周长是( )
A.8
B.11
C.13
D.11或13

查看答案和解析>>

同步练习册答案