【题目】已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?
(2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于2 cm?
(3)在(1)中,△PQB的面积能否等于7cm2?说明理由.
【答案】
(1)解:设经过x秒以后△PBQ面积为4cm2,根据题意得 (5﹣x)×2x=4,
整理得:x2﹣5x+4=0,
解得:x=1或x=4(舍去).
答:1秒后△PBQ的面积等于4cm2
(2)解:PQ=2 ,则PQ2=25=BP2+BQ2,即40=(5﹣t)2+(2t)2,
解得:t=0(舍去)或3.
则3秒后,PQ的长度为2 cm
(3)解:令S△PQB=7,即BP× =7,(5﹣t)× =7,
整理得:t2﹣5t+7=0,
由于b2﹣4ac=25﹣28=﹣3<0,
则原方程没有实数根,
所以在(1)中,△PQB的面积不能等于7cm2
【解析】(1)经过x秒钟,△PBQ的面积等于4cm2 , 根据点P从A点开始沿AB边向点B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动,表示出BP和BQ的长可列方程求解;(2)利用勾股定理列出方程求解即可;(3)令S△PQB=7,根据三角形的面积公式列出方程,再根据b2﹣4ac得出原方程没有实数根,从而得出△PQB的面积不能等于7cm2 .
【考点精析】掌握勾股定理的概念是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
科目:初中数学 来源: 题型:
【题目】我校初三年级开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,如果购买3张两人学习桌,1张三人学习桌需220元;如果购买2张两人学习桌,3张三人学习桌需310元.
(1)求两人学习桌和三人学习桌的单价;
(2)学校欲投入资金不超过6000元,购买两种学习桌共98张,以至少满足248名学生的需求,设购买两人学习桌x张,购买两人学习桌和三人学习桌的总费用为W 元,求出W与x的函数关系式;求出所有的购买方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个长方形操场的长是宽的2.5倍,根据需要将它扩建,把它的长和宽各加长20m后,它的长是宽的2倍,求扩建前长方形操场的周长是______m.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com