精英家教网 > 初中数学 > 题目详情

边长为4的正三角形的高为


  1. A.
    2
  2. B.
    4
  3. C.
    数学公式
  4. D.
    2数学公式
D
分析:根据等边三角形三线合一的性质,即可得D为BC的中点,即可求BD的值,已知AB、BD根据勾股定理即可求AD的值.
解答:解:∵等边三角形三线合一,
∴D为BC的中点,
∴BD=BC=2,
在Rt△ABD中,AB=4,BD=2,
则AD====2
故选D.
点评:本题主要考查了勾股定理在直角三角形中的运用,等边三角形三线合一的性质,本题中根据勾股定理求AD的值是解题的关键,难度适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

以边长为2cm的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是(  )
A、2×(
2
2
10厘米
B、2×(
1
2
9厘米
C、2×(
3
2
10厘米
D、2×(
3
2
9厘米

查看答案和解析>>

科目:初中数学 来源: 题型:

以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第四个正三角形的边长是(  )
A、3×(
2
2
)
厘米
B、
3
2
厘米
C、
3
3
8
厘米
D、3×(
1
2
)
厘米

查看答案和解析>>

科目:初中数学 来源: 题型:

O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.
(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:
①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为
 

②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为
 

(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为
 

②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;
(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为
 
时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.
(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为
 
时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

O是边长为a的正多边形的中心,将一块半径足够长,圆心角为α的扇形纸板的圆心放在O点处,并将纸板绕O点旋转.
(1)若正多边形为正三角形,扇形的圆心角α=120°,请你通过观察或测量,填空:
①如图1,正三角形ABC的边被扇形纸板覆盖部分的总长度为________;
②如图2,正三角形ABC的边被扇形纸板覆盖部分的总长度为________;
(2)若正多边形为正方形,扇形的圆心角α=90°时,①如图3,正方形ABCD的边被扇形纸板覆盖部分的总长度为________;
②如图4,正方形ABCD的边被扇形纸板覆盖部分的总长度为多少?并给予证明;
(3)若正多边形为正五边形,如图5,当扇形纸板的圆心角α为________时,正五边形的边被扇形纸板覆盖部分的总长度仍为定值a.
(4)一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,并将纸板绕O点旋转.当扇形纸板的圆心角为________时,正n边形的边被扇形纸板覆盖部分的总长度为定值a.

查看答案和解析>>

同步练习册答案