
解:(1)延长DE交BC于F,
∵AD∥BC,
且ED⊥AD,
∴DE⊥BC,
又∵∠ECB=45°,
∴△ECF为等腰直角三角形.
∴EF=CF,(
∴在△BEF和△DCF中

,
∴△BEF≌△DCF,
∴BE=CD;
(2)过A作AH⊥BC于H.
设EF=CF=x,
∵Rt△DCF中,
tan∠DCB=

,
∴

,
x=1,
∴EF=CF=1,
∴DF=DE+EF=4,
∴BF=DF=4,
∴在Rt△DFC中,

,
∵四边形ABCD为等腰梯形,
∴AB=CD=

,
又∵△BEF≌△DCF,
∴BE=CD=

,
又∵四边形ABCD为等腰梯形,
∴AB=CD,
又∵AD∥BC且AH⊥BC,DF⊥BC,
∴AH=DF,
∴在Rt△AHB和△DFC中,

,
∴△AHB≌△DFC(HL),
∴BH=CF=1,
∴HF=BF-BH=4-1=3,
∴四边形ABED的周长为:AB+BE+DE+AD,
=

,
=

.
分析:(1)利用作辅助线的方法,证明△BEF和△DCF全等,从而得到BE=CD,
(2)由tan∠DCB=4,根据给出的三角函数的定义,在△DCF中,tan∠DCB=

,过A作AH⊥BC于H,
设EF=CF=x,代入求得x的值,从而求出CD的长,由三角形的全等,CD=BE,证明△AHB≌△DFC,四边形ADFH是矩形,AD=HF,求得答案.
点评:此题是一道梯形和函数综合性的题目,难度较大.