精英家教网 > 初中数学 > 题目详情

【题目】张师傅开车到某地送货,汽车出发前油箱中有油50升,行驶一段时间,张师傅在加油站加油,然后继续向目的地行驶.已知加油前、后汽车都匀速行驶,汽车行驶时每小时的耗油量一定.油箱中剩余油量Q(升)与汽车行驶时间t(时)之间的函数图象如图所示.

(1)张师傅开车行驶小时后开始加油,本次加油升.
(2)求加油前Q与t之间的函数关系式.
(3)如果加油站距目的地210千米,汽车行驶速度为70千米/时,张师傅要想到达目的地,油箱中的油是否够用?请通过计算说明理由.

【答案】
(1)3,31
(2)解:设加油前Q与t之间的函数关系式为Q=kt+b(k≠0),

将(0,50)、(3,14)代入Q=kt+b,

得:

解得:

加油前Q与t之间的函数关系式为Q=﹣12t+50(0≤t≤3)


(3)解:该车每小时耗油量为:(50﹣14)÷3=12(升),

∴到达目的地还需耗用12×(210÷70)=36(升),

∵45>36,

∴张师傅要想到达目的地,油箱中的油够用


【解析】解:(1)观察函数图象可知:张师傅开车行驶3小时后开始加油,

45﹣14=31(升).

所以答案是:3;31.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知在Rt△ABC中,∠ABC=90°,AB=BC BOAC边上的中线,点PD分别在AOBC上,PB=PDDEAC于点E

(1)求证:△BPO≌△PDE

(2)若PB平分∠ABO,其余条件不变.求证:AP=CD

(先将图形补充完整,然后再证明)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,矩形OABC的对角线OB、AC相交于点D,BE∥AC,AE∥OB.函数 (k>0,x>0)的图象经过点E.若点A、C的坐标分别为(3,0)、(0,2),则k的值为( )

A.3
B.4
C.4.5
D.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,点在直线上,,则的度数为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线之间有一个直角三角形,其中.

(1)如图,点在直线上,在直线上,若.试说明:

(2)将三角形如图放置,直线,点分别在直线上,且平分.的度数;(的代数式表示)

(3)(2)的前提下,直线平分交直线,如图.取不同数值时,的大小是否发生变化?若不变求其值,若变化请求出变化的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y=﹣x+3与抛物线 交于A、B两点,点A在x轴上,点B的横坐标为 .动点P在抛物线上运动(不与点A、B重合),过点P作y轴的平行线,交直线AB于点Q.当PQ不与y轴重合时,以PQ为边作正方形PQMN,使MN与y轴在PQ的同侧,连结PM.设点P的横坐标为m.

(1)求b、c的值.
(2)当点N落在直线AB上时,直接写出m的取值范围.
(3)当点P在A、B两点之间的抛物线上运动时,设正方形PQMN的周长为C,求C与m之间的函数关系式,并写出C随m增大而增大时m的取值范围.
(4)当△PQM与坐标轴有2个公共点时,直接写出m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图,在直角三角形ABC中,BAC=90°,ADBC于点D,可知:BAD=C(不需要证明);

特例探究:如图MAN=90°,射线AE在这个角的内部,点B、C在MAN的边AM、AN上,且AB=AC, CFAE于点F,BDAE于点D.证明:ABD≌△CAF;

归纳证明:如图,点BC在MAN的边AM、AN上,点EF在MAN内部的射线AD上,1、2分别是ABE、CAF的外角.已知AB=AC, 1=2=BAC.求证:ABE≌△CAF;

拓展应用:如图,在ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,1=2=BAC.若ABC的面积为15,则ACF与BDE的面积之和为 .(12分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长均为1个单位的正方形网格图中,建立了平面直角坐标系xOy,按要求解答下列问题:

(1)写出△ABC三个顶点的坐标;

(2)画出△ABC向右平移6个单位后得到的图形△A1B1C1

(3)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=AD,那么添加下列一个条件后,仍无法判定ABC≌△ADC的是(  )

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

同步练习册答案