精英家教网 > 初中数学 > 题目详情
●观察计算
当a=5,b=3时,的大小关系是______
【答案】分析:●观察计算:分别代入计算即可得出的大小关系;
●探究证明:
(1)由于OC是直径AB的一半,则OC易得.通过证明△ACD∽△CBD,可求CD;
(2)分a=b,a≠b讨论可得出的大小关系;
●实践应用:通过前面的结论长方形为正方形时,周长最小.
解答:解:●观察计算:=.(2分)
●探究证明:
(1)∵AB=AD+BD=2OC,
(3分)
∵AB为⊙O直径,
∴∠ACB=90°.
∵∠A+∠ACD=90°,∠ACD+∠BCD=90°,
∴∠A=∠BCD.
∴△ACD∽△CBD.(4分)

即CD2=AD•BD=ab,
.(5分)

(2)当a=b时,OC=CD,=
a≠b时,OC>CD,.(6分)

●结论归纳:.(7分)
●实践应用
设长方形一边长为x米,则另一边长为米,设镜框周长为l米,则.(9分)
,即x=1(米)时,镜框周长最小.
此时四边形为正方形时,周长最小为4米.(10分)
点评:本题综合考查了几何不等式,相似三角形的判定与性质,通过计算和证明得出结论:是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网●观察计算
当a=5,b=3时,
a+b
2
ab
的大小关系是
 

当a=4,b=4时,
a+b
2
ab
的大小关系是
 

●探究证明
如图所示,△ABC为圆O的内接三角形,AB为直径,过C作CD⊥AB于D,设AD=a,BD=b.
(1)分别用a,b表示线段OC,CD;
(2)探求OC与CD表达式之间存在的关系(用含a,b的式子表示).
●归纳结论
根据上面的观察计算、探究证明,你能得出
a+b
2
ab
的大小关系是:
 

●实践应用
要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

附加题.观察计算
当a=5,b=3时,
a+b
2
ab
的大小关系是

当a=4,b=4时,
a+b
2
ab
的大小关系是
=
=

●探究证明
如图所示,△ABC为圆O的内接三角形,AB为直径,过C作CD⊥AB于D,设AD=a,BD=b.
(1)分别用a,b表示线段OC,CD;
(2)探求OC与CD表达式之间存在的关系(用含a,b的式子表示).
●归纳结论
根据上面的观察计算、探究证明,你能得出
a+b
2
ab
的大小关系是:
a+b
2
ab
(当a=b时,取“=”)
a+b
2
ab
(当a=b时,取“=”)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•德州)●观察计算
当a=5,b=3时,的大小关系是
当a=4,b=4时,的大小关系是=
●探究证明
如图所示,△ABC为圆O的内接三角形,AB为直径,过C作CD⊥AB于D,设AD=a,BD=b.
(1)分别用a,b表示线段OC,CD;
(2)探求OC与CD表达式之间存在的关系(用含a,b的式子表示).
●归纳结论
根据上面的观察计算、探究证明,你能得出的大小关系是:
●实践应用
要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(江苏省苏州市卷)数学 题型:解答题

(2011•德州)●观察计算
当a=5,b=3时,的大小关系是
当a=4,b=4时,的大小关系是=
●探究证明
如图所示,△ABC为圆O的内接三角形,AB为直径,过C作CD⊥AB于D,设AD=a,BD=b.
(1)分别用a,b表示线段OC,CD;
(2)探求OC与CD表达式之间存在的关系(用含a,b的式子表示).
●归纳结论
根据上面的观察计算、探究证明,你能得出的大小关系是:
●实践应用
要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.

查看答案和解析>>

同步练习册答案