精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,ABAC2,∠BAC45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BECF相交于点D

1)求证:BECF

2)当四边形ABDF为菱形时,求CD的长.

【答案】1)见解析;(2CD22

【解析】

1)根据旋转的性质得到AEAFABAC2,∠EAF=∠BAC45°,然后根据“边角边”证明△ABE≌△ACF,之后根据全等三角形性质得出结论即可。

(2)根据菱形的性质得出DFAF2DFAB,再根据平行线 性质证明1=∠BAC45°,此时则可判定断△ACF为等腰直角三角形,之后进一步求解即可。

1)证明:如图

∵△AEF是由△ABC绕点A按逆时针方向旋转得到的,

AEAFABAC2,∠EAF=∠BAC45°,

∴∠BAC+3=∠EAF+3

即∠BAE=∠CAF,在△ABE和△ACF中:

∵AB=AC,∠BAE=∠CAF,AE=AF,

∴△ABE≌△ACF(SAS)

BECF

2)解:如图

∵四边形ABDF为菱形,

DFAF2DFAB

∴∠1=∠BAC45°,

∴△ACF为等腰直角三角形,

CFAF2

CDCFDF22

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】11·湖州)(本小题10分)

如图,已知EF分别是□ABCD的边BCAD上的点,且BE=DF

求证:四边形AECF是平行四边形;

BC=10∠BAC=90°,且四边形AECF是菱形,求BE的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列一元二次方程:

12x+32xx+3).

2x22x30

32x29x+80

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据下列条件求二次函数解析式

1)已知一个二次函数的图象经过了点A0,﹣1),B10),C(﹣12);

2)已知抛物线顶点P(﹣1,﹣8),且过点A0,﹣6);

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线yax2+bx+ca0)的对称轴为直线x=﹣1,与x轴的一个交点在(﹣30和(﹣20)之间,其部分图象如图,则下列结论:2ab04acb20点(x1y1),(x2y2)在抛物线上若x1x2,则y1y2a+b+c0.正确结论的个数是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为O的直径,C为O上一点,其中AB=4,AOC=120°,P为O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为(  )

A. 3 B. 1+ C. 1+3 D. 1+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于的方程有非负实数解,关于的一次不等式组,有解,则满足这两个条件的所有整数的值的和是

A.-5B.-6C.-7D.-8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知⊙O经过四边形ABCDBD两点,并与四条边分别交于点EFGH,且

1)如图①,连接BD,若BD是⊙O的直径,求证:∠A=∠C

2)如图②,若的度数为θ,∠Aα,∠Cβ,请直接写出θαβ之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.

(1)若O、C、A在一条直线上,连AD、BC,分别取AD、BC的中点M、N如图(1),求出线段MN、AC之间的数量关系;

(2)若将△OCD绕O旋转到如图(2)的位置,连AD、BC,取BC的中点M,请探究线段OM、AD之间的关系,并证明你的结论;

(3)若将△OCD由图(1)的位置绕O顺时针旋转角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,请直接写出此时△ABC的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案