【题目】如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.
(1)求证:BE=CF;
(2)当四边形ABDF为菱形时,求CD的长.
【答案】(1)见解析;(2)CD=2﹣2.
【解析】
(1)根据旋转的性质得到AE=AF=AB=AC=2,∠EAF=∠BAC=45°,然后根据“边角边”证明△ABE≌△ACF,之后根据全等三角形性质得出结论即可。
(2)根据菱形的性质得出DF=AF=2,DF∥AB,再根据平行线 性质证明∠1=∠BAC=45°,此时则可判定断△ACF为等腰直角三角形,之后进一步求解即可。
(1)证明:如图
,
∵△AEF是由△ABC绕点A按逆时针方向旋转得到的,
∴AE=AF=AB=AC=2,∠EAF=∠BAC=45°,
∴∠BAC+∠3=∠EAF+∠3,
即∠BAE=∠CAF,在△ABE和△ACF中:
∵AB=AC,∠BAE=∠CAF,AE=AF,
∴△ABE≌△ACF(SAS),
∴BE=CF;
(2)解:如图
,
∵四边形ABDF为菱形,
∴DF=AF=2,DF∥AB,
∴∠1=∠BAC=45°,
∴△ACF为等腰直角三角形,
∴CF=AF=2,
∴CD=CF﹣DF=2﹣2.
科目:初中数学 来源: 题型:
【题目】(11·湖州)(本小题10分)
如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF。
⑴求证:四边形AECF是平行四边形;
⑵若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下列条件求二次函数解析式
(1)已知一个二次函数的图象经过了点A(0,﹣1),B(1,0),C(﹣1,2);
(2)已知抛物线顶点P(﹣1,﹣8),且过点A(0,﹣6);
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点在(﹣3,0和(﹣2,0)之间,其部分图象如图,则下列结论:①2a﹣b=0:②4ac﹣b2<0:③点(x1,y1),(x2,y2)在抛物线上若x1<x2,则y1<y2;④a+b+c<0.正确结论的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,连AP,取AP中点Q,连CQ,则线段CQ的最大值为( )
A. 3 B. 1+ C. 1+3 D. 1+
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O经过四边形ABCD的B、D两点,并与四条边分别交于点E、F、G、H,且.
(1)如图①,连接BD,若BD是⊙O的直径,求证:∠A=∠C;
(2)如图②,若的度数为θ,∠A=α,∠C=β,请直接写出θ、α和β之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.
(1)若O、C、A在一条直线上,连AD、BC,分别取AD、BC的中点M、N如图(1),求出线段MN、AC之间的数量关系;
(2)若将△OCD绕O旋转到如图(2)的位置,连AD、BC,取BC的中点M,请探究线段OM、AD之间的关系,并证明你的结论;
(3)若将△OCD由图(1)的位置绕O顺时针旋转角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,请直接写出此时△ABC的面积;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com